Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Biochem Biophys Res Commun ; 706: 149761, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38479245

RESUMO

Tubulin C-terminal tail (CTT) is a disordered segment extended from each tubulin monomer of αß tubulin heterodimers, the building blocks of microtubules. The tubulin CTT contributes to the cellular function of microtubules such as intracellular transportation by regulating their interaction with other proteins and cell shape regulation by controlling microtubule polymerization dynamics. Although the mechanical integrity of microtubules is crucial for their functions, the role of tubulin CTT on microtubule mechanical properties has remained elusive. In this work, we investigate the role of tubulin CTTs in regulating the mechanical properties of microtubules by estimating the persistence lengths and investigating the buckling behavior of microtubules with and without CTT. We find that microtubules with intact CTTs exhibit twice the rigidity of microtubules lacking tubulin CTTs. Our study will widen the scope of altering microtubule mechanical properties for its application in nano bio-devices and lead to novel therapeutic approaches for neurodegenerative diseases with altered microtubule properties.


Assuntos
Microtúbulos , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Polimerização
2.
Chembiochem ; 24(8): e202200782, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36935355

RESUMO

Spatiotemporal modulation of microtubules by light has become an important aspect of the biological and nanotechnological applications of microtubules. We previously developed a Tau-derived peptide as a binding unit to the inside of microtubules. Here, we conjugated the Tau-derived peptide to spiropyran, which is reversibly converted to merocyanine by light, as a reversible photocontrol system to stabilize microtubules. Among the synthesized peptides with spiropyran/merocyanine at different positions, several peptides were bound to the inside of microtubules and stabilized the structures of microtubules. The peptide with spiropyran at the N-terminus induced polymerization and stabilization of microtubules, whereas the same peptide with the merocyanine form did not exert these effects. Reversible formation of microtubules/tubulin aggregates was achieved using the peptide with spiropyran conjugated at the N-terminus and irradiation with UV and visible light. Spiropyran-conjugated Tau-derived peptides would be useful for spatiotemporal modulation of microtubule stability through reversible photocontrol of binding.


Assuntos
Microtúbulos , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Peptídeos/química , Benzopiranos/química , Proteínas tau/metabolismo
3.
Phys Chem Chem Phys ; 24(47): 28782-28787, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36382471

RESUMO

Controlling the patterns formed by self-propelled particles through dynamic self-organization is a challenging task. Although varieties of patterns associated with chiral self-propelled particles have been reported, essential factors that determine the morphology of the patterns have remained unclear. Here, we explore theoretically how torque formed upon collision of the particles affects the dynamic self-organization of the particles and determine the patterns. Based on a particle-based model with collision-induced torque and torque associated with self-propulsion, we find that introducing collision-induced torque turns the homogeneous bi-directionally aligned particles into rotating mono-polar flocks, which helps resolve a discrepancy in the earlier observations in microfilament gliding assays.

4.
Nano Lett ; 21(24): 10478-10485, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34874725

RESUMO

Biomolecular motor proteins that generate forces by consuming chemical energy obtained from ATP hydrolysis play pivotal roles in organizing cytoskeletal structures in living cells. An ability to control cytoskeletal structures would benefit programmable protein patterning; however, our current knowledge is limited because of the underdevelopment of engineering approaches for controlling pattern formation. Here, we demonstrate the controlling of self-assembled patterns of microtubules (MTs) driven by kinesin motors by designing the boundary shape in fabricated microwells. By manipulating the collision angle of gliding MTs defined by the boundary shape, the self-assembly of MTs can be controlled to form protruding bundle and bridge patterns. Corroborated by the theory of self-propelled rods, we further show that the alignment of MTs determines the transition between the assembled patterns, providing a blueprint to reconstruct bridge structures in microchannels. Our findings introduce the tailoring of the self-organization of cytoskeletons and motor proteins for nanotechnological applications.


Assuntos
Cinesinas , Microtúbulos , Citoesqueleto , Microtúbulos/química , Movimento (Física) , Miosinas/análise
5.
Biochem Biophys Res Commun ; 563: 73-78, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34062389

RESUMO

Flocking is a fascinating coordinated behavior of living organisms or self-propelled particles (SPPs). Particularly, monopolar flocking has been attractive due to its potential applications in various fields. However, the underlying mechanism behind flocking and emergence of monopolar motion in flocking of SPPs has remained obscured. Here, we demonstrate monopolar flocking of kinesin-driven microtubules, a self-propelled biomolecular motor system. Microtubules with an intrinsic structural chirality preferentially move towards counter-clockwise direction. At high density, the CCW motion of microtubules facilitates monopolar flocking and formation of a spiral pattern. The monopolar flocking of microtubules is accounted for by a torque generated when the motion of microtubules was obstructed due to collisions. Our results shed light on flocking and emergence of monopolar motion in flocking of chiral active matters. This work will help regulate the polarity in collective motion of SPPs which in turn will widen their applications in nanotechnology, materials science and engineering.


Assuntos
Cinesinas/química , Microtúbulos/química , Nanotecnologia , Animais , Movimento (Física) , Tamanho da Partícula , Suínos
6.
Nano Lett ; 20(7): 5251-5258, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32525681

RESUMO

Construction of magnetotactic materials is a significant challenge in nanotechnology applications such as nanodevices and nanotransportation. Artificial magnetotactic materials can be designed from magnetotactic bacteria because these bacteria use magnetic nanoparticles for aligning with and moving within magnetic fields. Microtubules are attractive scaffolds to construct magnetotactic materials because of their intrinsic motility. Nonetheless, it is challenging to magnetically control their orientation while retaining their motility by conjugating magnetic nanoparticles on their outer surface. Here we solve the issue by encapsulating magnetic cobalt-platinum nanoparticles inside microtubules using our developed Tau-derived peptide that binds to their internal pockets. The in situ growth of cobalt-platinum nanoparticles resulted in the formation of a linear-chain assembly of nanoparticles inside the microtubules. The magnetic microtubules significantly aligned with a high order parameter (0.71) along the weak magnetic field (0.37 T) and showed increased motility. This work provides a new concept for designing magnetotactic materials.


Assuntos
Nanopartículas Metálicas , Campos Magnéticos , Microtúbulos , Peptídeos , Platina
7.
Biochem Biophys Res Commun ; 524(1): 249-254, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-31983434

RESUMO

Microtubule is the most rigid component of eukaryotic cytoskeleton that plays pivotal roles in many important cellular events. Microtubules are known to undergo bending or buckling in cells which often results in breaking of this cytoskeletal protein filament. Various cellular events such as cell migration, chromosome segregation, etc. are dependent on the buckling induced breaking of microtubules. However, the reason behind the breaking of buckled microtubules in cell has remained obscure yet. In this work, we have demonstrated breaking of microtubules on a 2D elastic medium by applying compressive stress. The applied compressive stress caused buckling of the microtubules which ultimately resulted in their breaking. We show that breaking of the buckled microtubules cannot be accounted for by considering the changes in curvature of the microtubules due to mechanical deformation. Our results confirm that, it is the interaction of kinesin, a microtubule-associated motor protein, with microtubules which plays the key role in breaking of the buckled microtubules on the 2D elastic medium. The breaking of buckled microtubules is ascribed to decrease in rigidity of microtubules upon interaction with kinesins. This work for the first time confirms the involvement of a microtubule-associated motor protein in breaking of microtubules under compressive stress, which will help further clarify the mechanism of breaking of buckled microtubules in cells and its significance in the cellular events.


Assuntos
Cinesinas/metabolismo , Microtúbulos/metabolismo , Animais , Humanos , Modelos Biológicos , Suínos
8.
Sci Technol Adv Mater ; 21(1): 323-332, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32939158

RESUMO

Recent advancements in molecular robotics have been greatly contributed by the progress in various fields of science and technology, particularly in supramolecular chemistry, bio- and nanotechnology, and informatics. Yet one of the biggest challenges in molecular robotics has been controlling a large number of robots at a time and employing the robots for any specific task as flocks in order to harness emergent functions. Swarming of molecular robots has emerged as a new paradigm with potentials to overcome this hurdle in molecular robotics. In this review article, we comprehensively discuss the latest developments in swarm molecular robotics, particularly emphasizing the effective utilization of bio- and nanotechnology in swarming of molecular robots. Importance of tuning the mutual interaction among the molecular robots in regulation of their swarming is introduced. Successful utilization of DNA, photoresponsive molecules, and natural molecular machines in swarming of molecular robots to provide them with processing, sensing, and actuating ability is highlighted. The potentials of molecular swarm robots for practical applications by means of their ability to participate in logical operations and molecular computations are also discussed. Prospects of the molecular swarm robots in utilizing the emergent functions through swarming are also emphasized together with their future perspectives.

9.
Nano Lett ; 19(6): 3933-3938, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31037942

RESUMO

DNA has been well-known for its applications in programmable self-assembly of materials. Nonetheless, utility of DNA origami, which offers more opportunity to realize complicated operations, has been very limited. Here we report self-assembly of a biomolecular motor system, microtubule-kinesin mediated by DNA origami nanostructures. We demonstrate that a rodlike DNA origami motif facilitates self-assembly of microtubules into asters. A smooth-muscle like molecular contraction system has also been realized using the DNA origami in which self-assembled microtubules exhibited fast and dynamic contraction in the presence of kinesins through an energy dissipative process. This work provides potential nanotechnological applications of DNA and biomolecular motor proteins.


Assuntos
DNA/química , Cinesinas/química , Microtúbulos/química , Nanoestruturas/química , Microtúbulos/ultraestrutura , Músculo Liso/química , Músculo Liso/ultraestrutura , Nanoestruturas/ultraestrutura , Nanotecnologia , Conformação de Ácido Nucleico
10.
Chemistry ; 24(56): 14958-14967, 2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30088680

RESUMO

Microtubules are cytoskeletal filaments that serve as attractive scaffolds for developing nanomaterials and nanodevices because of their unique structural properties. The functionalization of the outer surface of microtubules has been established for this purpose. However, no attempts have been made to encapsulate molecules inside microtubules with 15 nm inner diameter. The encapsulation of various molecular cargos inside microtubules constitutes a new concept for nanodevice and nanocarrier applications of microtubules. Here, we developed peptide motifs for binding to the inner surface of microtubules, based on a repeat domain of the microtubule-associated protein Tau. One of the four Tau-derived peptides, 2N , binds to a taxol binding pocket of ß-tubulin located inside microtubules by preincubation with tubulin dimer and subsequent polymerization of the peptide-tubulin complex. By conjugation of 2N to gold nanoparticles, encapsulation of gold nanoparticles inside microtubules was achieved. The methodology for molecular encapsulation inside microtubules by the Tau-derived peptide is expected to advance the development of microtubule-based nanomaterials and nanodevices.


Assuntos
Microtúbulos/química , Nanoestruturas/química , Peptídeos/química , Proteínas tau/química , Sequência de Aminoácidos , Animais , Portadores de Fármacos/química , Ouro/química , Nanopartículas Metálicas/química , Microtúbulos/ultraestrutura , Modelos Moleculares , Nanoestruturas/ultraestrutura , Nanotecnologia , Suínos , Tubulina (Proteína)/química
11.
Biochem Biophys Res Commun ; 480(1): 132-138, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27693793

RESUMO

Buckling of microtubules observed in cells has been reconstructed on a two-dimensional elastic medium consisting of kinesins grafted over compressible substrates, enabling precise control of experimental conditions and quantitative analysis. However, interpretations of the observations have ambiguities due to inevitable experimental difficulties. In this study, with computer simulations, we investigated importance of the mode of interaction of microtubule with elastic medium in the buckling behavior of microtubule. By taking into consideration of forced-induced detachments of kinesins from microtubules, our simulations reproduced the previous experimental results, and showed deviations from predictions of the elastic foundation model. On the other hand, with hypothetical linkers permanently bound to microtubules, our simulation reproduced the predictions of the elastic foundation model. By analyzing the results of the simulations, we investigated as to why the difference arose. These findings indicate the importance of the mode of interaction of microtubule with the medium in the buckling behavior of microtubule. Our findings would bring new insights on buckling of microtubules in living cells.


Assuntos
Microtúbulos/química , Microtúbulos/metabolismo , Força Compressiva , Simulação por Computador , Elasticidade , Cinesinas/química , Cinesinas/metabolismo
12.
Biomacromolecules ; 16(1): 374-8, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25474594

RESUMO

Biomolecular motor system microtubule (MT)-kinesin is considered a building block for developing artificial microdevices. Recently, an active self-organization method has been established to integrate MT filaments into ring-shaped assembly that can produce rotational motion both in the clockwise and in the counterclockwise directions. In this work, we have investigated the effect of parameters such as MT and kinesin concentration, length, and rigidity of MT and type of kinesin (structure of tail region) on the preferential rotation of the ring-shaped MT assembly produced in an active self-organization. We elucidated that these factors can significantly affect the bias of rotation of the ring-shaped MT assembly, which seems to be related to the fluctuation of leading tip of moving MT filaments. This new finding might be important for designing handedness regulated artificial biomachine using the ring-shaped MT assembly in future.


Assuntos
Cinesinas/química , Tubulina (Proteína)/química , Animais , Fenômenos Biomecânicos , Biotina/química , Humanos , Cinesinas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Rotação , Suínos , Tubulina (Proteína)/metabolismo
13.
Soft Matter ; 11(6): 1151-7, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25557641

RESUMO

The microtubule (MT)-kinesin biomolecular motor system has attracted considerable attention due to its possible applications in artificial biomachines. Recently, an active self-organization (AcSO) method has been established to integrate MT filaments into highly organized assembled structures. The ring-shaped MT assembly, one of the structures derived from the AcSO of MTs, can convert the translational motion of MTs into rotational motion. Due to this attractive feature, the ring-shaped MT assembly appears to be a promising candidate for developing artificial devices and for future nanotechnological applications. In this work, we have investigated the effect of length and rigidity of the MT filaments on the size of the ring-shaped MT assembly in the AcSO process. We show that the size of the ring-shaped MT assembly can be controlled by tuning the length and rigidity of MT filaments employed in the AcSO. Longer and stiffer MT filaments led to larger ring-shaped assemblies through AcSO, whereas AcSO of shorter and less stiff MT filaments produced smaller ring-shaped assemblies. This work might be important for the development of biomolecular motor based artificial biomachines, especially where size control of ring-shaped MT assembly will play an important role.


Assuntos
Microtúbulos/metabolismo , Animais , Biomimética , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/metabolismo , Cinesinas/metabolismo , Microscopia de Fluorescência , Suínos
14.
Biomacromolecules ; 15(5): 1797-805, 2014 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-24697688

RESUMO

The microtubule (MT) is the stiffest cytoskeletal filamentous protein that takes part in a wide range of cellular activities where its mechanical property plays a crucially significant role. How a single biological entity plays multiple roles in cell has been a mystery for long time. Over the recent years, it has been known that modulation of the mechanical property of MT by different cellular agents is the key to performing manifold in vivo activities by MT. Studying the mechanical property of MT thus has been a prerequisite in understanding how MT plays such diversified in vivo roles. However, the anisotropic structure of MT has been an impediment in obtaining a precise description of the mechanical property of MT along its longitudinal and lateral directions that requires employment of distinct experimental approach and has not been demonstrated yet. In this work, we have developed an experimental system that enabled us to investigate the effect of tensile stress on MT. By using our newly developed system, (1) we have determined the Young's modulus of MT considering its deformation under applied tensile stress and (2) a new role of MT associated motor protein kinesin in modulating the mechanical property of MT was revealed for the first time. Decrease in Young's modulus of MT with the increase in interaction with kinesin suggests that kinesin has a softening effect on MT and thereby can modulate the rigidity of MT. This work will be an aid in understanding the modulation of mechanical property of MTs by MT associated proteins and might also help obtain a clear insight of the endurance and mechanical instability of MTs under applied stress.


Assuntos
Cinesinas/metabolismo , Microtúbulos/química , Microtúbulos/metabolismo , Animais , Cinesinas/química , Cinesinas/isolamento & purificação , Propriedades de Superfície , Suínos , Tubulina (Proteína)/química , Tubulina (Proteína)/isolamento & purificação , Tubulina (Proteína)/metabolismo
15.
ACS Omega ; 9(36): 37748-37753, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39281908

RESUMO

The swarming of self-propelled cytoskeletal filaments has emerged as a new aspect in the field of molecular machines or robotics, as it has overcome one of the major challenges of controlling the mutual interaction of a large number of individuals at a time. Recently, we reported on the photoregulated swarming of kinesin-driven cytoskeletal microtubule filaments in which visible (VIS) and ultraviolet (UV) light triggered the association and dissociation of the swarm, respectively. However, systematic control of this potential system has yet to be achieved to optimize swarming for further applications in molecular machines or robotics. Here, we demonstrate the precise and localized control of a biomolecular motor-based swarm system by varying different parameters related to photoirradiation. We control the reversibility of the swarming by changing the wavelength or intensity of light and the number of azobenzenes in DNA. In addition, we regulate the swarming in local regions by introducing different-sized or shaped patterns in the UV light system. Such a detailed study of the precise control of swarming would provide new perspectives for developing a molecular swarm system for further applications in engineering systems.

16.
Sci Adv ; 10(22): eadn4490, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820146

RESUMO

In recent years, there has been a growing interest in engineering dynamic and autonomous systems with robotic functionalities using biomolecules. Specifically, the ability of molecular motors to convert chemical energy to mechanical forces and the programmability of DNA are regarded as promising components for these systems. However, current systems rely on the manual addition of external stimuli, limiting the potential for autonomous molecular systems. Here, we show that DNA-based cascade reactions can act as a molecular controller that drives the autonomous assembly and disassembly of DNA-functionalized microtubules propelled by kinesins. The DNA controller is designed to produce two different DNA strands that program the interaction between the microtubules. The gliding microtubules integrated with the controller autonomously assemble to bundle-like structures and disassemble into discrete filaments without external stimuli, which is observable by fluorescence microscopy. We believe this approach to be a starting point toward more autonomous behavior of motor protein-based multicomponent systems with robotic functionalities.


Assuntos
DNA , Cinesinas , Microtúbulos , Robótica , DNA/química , DNA/metabolismo , Microtúbulos/metabolismo , Microtúbulos/química , Cinesinas/metabolismo , Cinesinas/química , Proteínas Motores Moleculares/metabolismo , Proteínas Motores Moleculares/química
17.
Sci Rep ; 13(1): 8870, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37258650

RESUMO

The physical properties of cytoskeletal microtubules have a multifaceted effect on the expression of their cellular functions. A superfamily of microtubule-associated proteins, MAP2, MAP4, and tau, promote the polymerization of microtubules, stabilize the formed microtubules, and affect the physical properties of microtubules. Here, we show differences in the effects of these three MAPs on the physical properties of microtubules. When microtubule-binding domain fragments of MAP2, tau, and three MAP4 isoforms were added to microtubules in vitro and observed by fluorescence microscopy, tau-bound microtubules showed a straighter morphology than the microtubules bound by MAP2 and the three MAP4 isoforms. Flexural rigidity was evaluated by the shape of the teardrop pattern formed when microtubules were placed in a hydrodynamic flow, revealing that tau-bound microtubules were the least flexible. When full-length MAPs fused with EGFP were expressed in human neuroblastoma (SH-SY5Y) cells, the microtubules in apical regions of protrusions expressing tau were straighter than in cells expressing MAP2 and MAP4. On the other hand, the protrusions of tau-expressing cells had the fewest branches. These results suggest that the properties of microtubules, which are regulated by MAPs, contribute to the morphogenesis of neurites.


Assuntos
Proteínas Associadas aos Microtúbulos , Neuroblastoma , Humanos , Proteínas Associadas aos Microtúbulos/química , Proteínas tau/química , Neuritos/metabolismo , Neuroblastoma/metabolismo , Microtúbulos/metabolismo , Ligação Proteica
18.
Methods Mol Biol ; 2430: 291-302, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35476340

RESUMO

Mechanical forces play pivotal roles in regulating various cellular functions. Biomolecular motor protein-driven intracellular transportation is one example which is affected by mechanical forces, although the mechanism at molecular level is unknown. In this chapter, we describe deformation of microtubules under compressive stress and we show that such deformation of microtubules affects the kinetics of dynein-driven cargo transportation along the microtubules. The extent of alteration in the kinetics of dynein-driven transportation is found strongly dependent on the extent of deformation of microtubules under compressive stress.


Assuntos
Dineínas , Proteínas Associadas aos Microtúbulos , Dineínas/metabolismo , Cinesinas , Cinética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo
19.
ACS Omega ; 7(22): 18597-18604, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35694499

RESUMO

Nowadays, biomolecular motor-based miniaturized lab-on-a-chip devices have been attracting much attention for their wide range of nanotechnological applications. Most of the applications are dependent on the motor-driven active transportation of their associated filamentous proteins as shuttles. Fluctuation in the movement of the shuttles is a major contributor to the dispersion in motor-driven active transportation, which limits the efficiency of the miniaturized devices. In this work, by employing the biomolecular motor kinesin and its associated protein filament microtubule as a model active transport system, we demonstrate that the deep-sea osmolyte trimethylamine N-oxide (TMAO) is useful in regulating the fluctuation in the motility of microtubule shuttles. We show that the motional diffusion coefficient, a measure of the fluctuation in the movement of the kinesin-propelled microtubules, gradually decreases upon increasing the concentration of TMAO in the transportation system. We have been able to reduce the motional diffusion coefficient of microtubules more than 200 times by employing TMAO at a concentration of 2 M. We also show that upon elimination of TMAO, the motional diffusion coefficient of microtubules can be restored, which confirms that TMAO can be used as a tool to reversibly regulate the fluctuation in the sliding movement of kinesin-propelled microtubule shuttles. Such reversible regulation of the dynamic behavior of the shuttles does not require sacrificing the concentration of fuel used for transportation. Our results confirm the ability to manipulate the nanoscale motion of biomolecular motor-driven active transporters in an artificial environment. This work is expected to further enhance the tunability of biomolecular motor functions, which, in turn, will foster their nanotechnological applications based on active transportation.

20.
Methods Mol Biol ; 2430: 193-203, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35476333

RESUMO

In vitro gliding assay of the filamentous protein microtubule (MT) on a kinesin motor protein coated surface has appeared as a classic platform for studying active matters. At high densities, the gliding MTs spontaneously align and self-organize into fascinating large-scale patterns. Application of mechanical stimuli e.g., stretching stimuli to the MTs gliding on a kinesin-coated surface can modulate their self-organization and patterns according to the boundary conditions. Depending on the mode of stretching, MT at high densities change their moving direction and exhibit various kinds of patterns such as stream, zigzag and vortex pattern. In this chapter, we discuss detail procedures on how to apply mechanical stimuli to the moving MTs on a kinesin coated substrate.


Assuntos
Cinesinas , Microtúbulos , Dineínas/metabolismo , Microtúbulos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA