Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Microbiol ; 58(9)2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32522827

RESUMO

Resistance to macrolide antibiotics is a global concern in the treatment of Streptococcus pyogenes (group A Streptococcus [GAS]) infections. In Iceland, since the detection of the first macrolide-resistant isolate in 1998, three epidemic waves of macrolide-resistant GAS infections have occurred, with peaks in 1999, 2004, and 2008. We conducted whole-genome sequencing of all 1,575 available GAS macrolide-resistant clinical isolates of all infection types collected at the national reference laboratory in Reykjavik, Iceland, from 1998 to 2016. Among 1,515 erythromycin-resistant isolates, 90.3% were of only three emm types, emm4 (n = 713), emm6 (n = 324), and emm12 (n = 332), with each being predominant in a distinct epidemic peak. The antibiotic efflux pump genes, mef(A) and msr(D), were present on chimeric mobile genetic elements in 99.3% of the macrolide-resistant isolates of these emm types. Of note, in addition to macrolide resistance, virtually all emm12 isolates had a single amino acid substitution in penicillin-binding protein PBP2X that conferred a 2-fold increased penicillin G and ampicillin MIC among the isolates tested. We conclude that each of the three large epidemic peaks of macrolide-resistant GAS infections occurring in Iceland since 1998 was caused by the emergence and clonal expansion of progenitor strains, with macrolide resistance being conferred predominantly by inducible Mef(A) and Msr(D) drug efflux pumps. The occurrence of emm12 strains with macrolide resistance and decreased beta-lactam susceptibility was unexpected and is of public health concern.


Assuntos
Infecções Estreptocócicas , Streptococcus pyogenes , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Estudos Epidemiológicos , Genótipo , Humanos , Islândia/epidemiologia , Macrolídeos/farmacologia , Metagenômica , Testes de Sensibilidade Microbiana , Mutação , Infecções Estreptocócicas/epidemiologia , Streptococcus pyogenes/genética , beta-Lactamas
2.
Am J Pathol ; 189(10): 2002-2018, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31369755

RESUMO

Two-component systems (TCSs) are signal transduction proteins that enable bacteria to respond to external stimuli by altering the global transcriptome. Accessory proteins interact with TCSs to fine-tune their activity. In group A Streptococcus (GAS), regulator of Cov (RocA) is an accessory protein that functions with the control of virulence regulator/sensor TCS, which regulates approximately 15% of the GAS transcriptome. Whole-genome sequencing analysis of serotype M28 GAS strains collected from invasive infections in humans identified a higher number of missense (amino acid-altering) and nonsense (protein-truncating) polymorphisms in rocA than expected. We hypothesized that polymorphisms in RocA alter the global transcriptome and virulence of serotype M28 GAS. We used naturally occurring clinical isolates with rocA polymorphisms (n = 48), an isogenic rocA deletion mutant strain, and five isogenic rocA polymorphism mutant strains to perform genome-wide transcript analysis (RNA sequencing), in vitro virulence factor assays, and mouse and nonhuman primate pathogenesis studies to test this hypothesis. Results demonstrated that polymorphisms in rocA result in either a subtle transcriptome change, causing a wild-type-like virulence phenotype, or a substantial transcriptome change, leading to a significantly increased virulence phenotype. Each polymorphism had a unique effect on the global GAS transcriptome. Taken together, our data show that naturally occurring polymorphisms in one gene encoding an accessory protein can significantly alter the global transcriptome and virulence phenotype of GAS, an important human pathogen.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Miosite/patologia , Polimorfismo de Nucleotídeo Único , Infecções Estreptocócicas/patologia , Streptococcus pyogenes/patogenicidade , Transativadores/genética , Animais , Proteínas de Bactérias/metabolismo , Camundongos , Miosite/epidemiologia , Miosite/microbiologia , Infecções Estreptocócicas/complicações , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/genética , Transcriptoma , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
3.
Infect Immun ; 86(11)2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30126898

RESUMO

Serotype M28 group A streptococcus (GAS) is a common cause of infections such as pharyngitis ("strep throat") and necrotizing fasciitis ("flesh-eating" disease). Relatively little is known about the molecular mechanisms underpinning M28 GAS pathogenesis. Whole-genome sequencing studies of M28 GAS strains recovered from patients with invasive infections found an unexpectedly high number of missense (amino acid-changing) and nonsense (protein-truncating) polymorphisms in rocA (regulator of Cov), leading us to hypothesize that altered RocA activity contributes to M28 GAS molecular pathogenesis. To test this hypothesis, an isogenic rocA deletion mutant strain was created. Transcriptome sequencing (RNA-seq) analysis revealed that RocA inactivation significantly alters the level of transcripts for 427 and 323 genes at mid-exponential and early stationary growth phases, respectively, including genes for 41 transcription regulators and 21 virulence factors. In contrast, RocA transcriptomes from other GAS M protein serotypes are much smaller and include fewer transcription regulators. The rocA mutant strain had significantly increased secreted activity of multiple virulence factors and grew to significantly higher colony counts under acid stress in vitro RocA inactivation also significantly increased GAS virulence in a mouse model of necrotizing myositis. Our results demonstrate that RocA is an important regulator of transcription regulators and virulence factors in M28 GAS and raise the possibility that naturally occurring polymorphisms in rocA in some fashion contribute to human invasive infections caused by M28 GAS strains.


Assuntos
Regulação Bacteriana da Expressão Gênica , Miosite/patologia , Infecções Estreptocócicas/patologia , Streptococcus pyogenes/genética , Streptococcus pyogenes/patogenicidade , Transativadores/metabolismo , Animais , Ensaio de Unidades Formadoras de Colônias , Modelos Animais de Doenças , Deleção de Genes , Perfilação da Expressão Gênica , Camundongos , Miosite/microbiologia , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/crescimento & desenvolvimento , Transativadores/genética , Fatores de Virulência/biossíntese , Fatores de Virulência/genética
4.
Infect Immun ; 84(12): 3268-3281, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27600505

RESUMO

To obtain new information about Streptococcus pyogenes intrahost genetic variation during invasive infection, we sequenced the genomes of 2,954 serotype M1 strains recovered from a nonhuman primate experimental model of necrotizing fasciitis. A total of 644 strains (21.8%) acquired polymorphisms relative to the input parental strain. The fabT gene, encoding a transcriptional regulator of fatty acid biosynthesis genes, contained 54.5% of these changes. The great majority of polymorphisms were predicted to deleteriously alter FabT function. Transcriptome-sequencing (RNA-seq) analysis of a wild-type strain and an isogenic fabT deletion mutant strain found that between 3.7 and 28.5% of the S. pyogenes transcripts were differentially expressed, depending on the growth temperature (35°C or 40°C) and growth phase (mid-exponential or stationary phase). Genes implicated in fatty acid synthesis and lipid metabolism were significantly upregulated in the fabT deletion mutant strain. FabT also directly or indirectly regulated central carbon metabolism genes, including pyruvate hub enzymes and fermentation pathways and virulence genes. Deletion of fabT decreased virulence in a nonhuman primate model of necrotizing fasciitis. In addition, the fabT deletion strain had significantly decreased survival in human whole blood and during phagocytic interaction with polymorphonuclear leukocytes ex vivo We conclude that FabT mutant progeny arise during infection, constitute a metabolically distinct subpopulation, and are less virulent in the experimental models used here.


Assuntos
Proteínas de Bactérias/metabolismo , Ácidos Graxos/biossíntese , Streptococcus pyogenes/genética , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Sequência de Bases , DNA Bacteriano/genética , Fasciite Necrosante/microbiologia , Regulação Bacteriana da Expressão Gênica , Especificidade de Hospedeiro , Macaca fascicularis , Mutação , Polimorfismo Genético
5.
Am J Pathol ; 185(2): 462-71, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25476528

RESUMO

Single-nucleotide polymorphisms (SNPs) are the most common source of genetic variation within a species; however, few investigations demonstrate how naturally occurring SNPs may increase strain virulence. We recently used group A Streptococcus as a model pathogen to study bacteria strain genotype-patient disease phenotype relationships. Whole-genome sequencing of approximately 800 serotype M59 group A Streptococcus strains, recovered during an outbreak of severe invasive infections across North America, identified a disproportionate number of SNPs in the gene encoding multiple gene regulator of group A Streptococcus (mga). Herein, we report results of studies designed to test the hypothesis that the most commonly occurring SNP, encoding a replacement of arginine for histidine at codon 201 of Mga (H201R), significantly increases virulence. Whole transcriptome analysis revealed that the H201R replacement significantly increased expression of mga and 54 other genes, including many proven virulence factors. Compared to the wild-type strain, a H201R isogenic mutant strain caused significantly larger skin lesions in mice. Serial quantitative bacterial culture and noninvasive magnetic resonance imaging also demonstrated that the isogenic H201R strain was significantly more virulent in a nonhuman primate model of joint infection. These findings show that the H201R replacement in Mga increases the virulence of M59 group A Streptococcus and provide new insight to how a naturally occurring SNP in bacteria contributes to human disease phenotypes.


Assuntos
Proteínas de Bactérias , Artropatias , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único , Infecções Estreptocócicas , Streptococcus pyogenes , Substituição de Aminoácidos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular , Feminino , Genoma Bacteriano , Humanos , Artropatias/genética , Artropatias/metabolismo , Artropatias/microbiologia , Artropatias/patologia , Camundongos , Camundongos Pelados , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/metabolismo , Infecções Estreptocócicas/patologia , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Streptococcus pyogenes/patogenicidade
6.
J Clin Microbiol ; 52(12): 4210-6, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25253790

RESUMO

Large hospital-based clinical laboratories must be prepared to rapidly investigate potential infectious disease outbreaks. To challenge the ability of our molecular diagnostics laboratory to use whole-genome sequencing in a potential outbreak scenario and identify impediments to these efforts, we studied 84 invasive serotype emm59 group A streptococcus (GAS) strains collected in the United States. We performed a rapid-response exercise to the mock outbreak scenario using whole-genome sequencing, genome-wide transcript analysis, and mouse virulence studies. The protocol changes installed in response to the lessons learned were tested in a second iteration. The initial investigation was completed in 9 days. Whole-genome sequencing showed that the invasive infections were caused by multiple subclones of epidemic emm59 GAS strains likely spread to the United States from Canada. The phylogenetic tree showed a strong temporal-spatial structure with diversity in mobile genetic element content, features that are useful for identifying closely related strains and possible transmission events. The genome data informed the epidemiology, identifying multiple patients who likely acquired the organisms through direct person-to-person transmission. Transcriptome analysis unexpectedly revealed significantly altered expression of genes encoding a two-component regulator and the hyaluronic acid capsule virulence factor. Mouse infection studies confirmed a high-virulence capacity of these emm59 organisms. Whole-genome sequencing, coupled with transcriptome analysis and animal virulence studies, can be rapidly performed in a clinical environment to effectively contribute to patient care decisions and public health maneuvers.


Assuntos
Defesa Civil , Surtos de Doenças , Ensaio de Proficiência Laboratorial , Infecções Estreptocócicas/diagnóstico , Infecções Estreptocócicas/epidemiologia , Streptococcus pyogenes/isolamento & purificação , Animais , Canadá , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Genoma Bacteriano , Pesquisa sobre Serviços de Saúde , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Camundongos , Técnicas de Diagnóstico Molecular/métodos , Streptococcus pyogenes/classificação , Streptococcus pyogenes/genética , Estados Unidos
7.
BMC Bioinformatics ; 14: 225, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23855743

RESUMO

BACKGROUND: The rapid development of next generation sequencing (NGS) technology provides a novel avenue for genomic exploration and research. Single nucleotide variants (SNVs) inferred from next generation sequencing are expected to reveal gene mutations in cancer. However, NGS has lower sequence coverage and poor SNVs detection capability in the regulatory regions of the genome. Post probabilistic based methods are efficient for detection of SNVs in high coverage regions or sequencing data with high depth. However, for data with low sequencing depth, the efficiency of such algorithms remains poor and needs to be improved. RESULTS: A new tool SNVHMM basing on a discrete hidden Markov model (HMM) was developed to infer the genotype for each position on the genome. We incorporated the mapping quality of each read and the corresponding base quality on the reads into the emission probability of HMM. The context information of the whole observation as well as its confidence were completely utilized to infer the genotype for each position on the genome in study. Therefore, more probability power can be gained over the Bayes based methods, which is very useful for SNVs detection for data with low sequencing depth. Moreover, our model was verified by testing against two sets of lobular breast tumor and Myelodysplastic Syndromes (MDS) data each. Comparing against a recently published SNVs calling algorithm SNVMix2, our model improved the performance of SNVMix2 largely when the sequencing depth is low and also outperformed SNVMix2 when SNVMix2 is well trained by large datasets. CONCLUSIONS: SNVHMM can detect SNVs from NGS cancer data efficiently even if the sequence depth is very low. The training data size can be very small for SNVHMM to work. SNVHMM incorporated the base quality and mapping quality of all observed bases and reads, and also provides the option for users to choose the confidence of the observation for SNVs prediction.


Assuntos
Variação Genética , Sequências Reguladoras de Ácido Nucleico/genética , Análise de Sequência de DNA , Algoritmos , Teorema de Bayes , Mapeamento Cromossômico , Genoma Humano , Genômica , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Cadeias de Markov , Valor Preditivo dos Testes
8.
Commun Biol ; 5(1): 480, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35590096

RESUMO

Mycobacterium tuberculosis (Mtb) is responsible for approximately 1.5 million deaths each year. Though 10% of patients develop tuberculosis (TB) after infection, 90% of these infections are latent. Further, mice are nearly uniformly susceptible to Mtb but their M1-polarized macrophages (M1-MΦs) can inhibit Mtb in vitro, suggesting that M1-MΦs may be able to regulate anti-TB immunity. We sought to determine whether human MΦ heterogeneity contributes to TB immunity. Here we show that IFN-γ-programmed M1-MΦs degrade Mtb through increased expression of innate immunity regulatory genes (Inregs). In contrast, IL-4-programmed M2-polarized MΦs (M2-MΦs) are permissive for Mtb proliferation and exhibit reduced Inregs expression. M1-MΦs and M2-MΦs express pro- and anti-inflammatory cytokine-chemokines, respectively, and M1-MΦs show nitric oxide and autophagy-dependent degradation of Mtb, leading to increased antigen presentation to T cells through an ATG-RAB7-cathepsin pathway. Despite Mtb infection, M1-MΦs show increased histone acetylation at the ATG5 promoter and pro-autophagy phenotypes, while increased histone deacetylases lead to decreased autophagy in M2-MΦs. Finally, Mtb-infected neonatal macaques express human Inregs in their lymph nodes and macrophages, suggesting that M1 and M2 phenotypes can mediate immunity to TB in both humans and macaques. We conclude that human MФ subsets show unique patterns of gene expression that enable differential control of TB after infection. These genes could serve as targets for diagnosis and immunotherapy of TB.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Citocinas/genética , Citocinas/metabolismo , Humanos , Imunidade Inata/genética , Macrófagos/metabolismo , Camundongos , Tuberculose/metabolismo
9.
Dig Dis Sci ; 56(9): 2595-604, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21409376

RESUMO

BACKGROUND: The effects of dietary polyunsaturated (PUFAs) and monounsaturated fatty acids (MUFAs) on intestinal cytokinetics within the context of colon cancer initiation and progression have been extensively studied. n-3 PUFAs have received the most attention due to their potential protective role. However, further investigation of the epigenetic perturbations caused by fatty acids in the context of colon cancer development is needed. METHODS: We used DNA microarrays to identify discriminative gene signatures (gene combinations) for the purpose of classifying n-3 PUFA-fed, carcinogen-injected, Sprague-Dawley rats at the initiation and progression stages. Animals were assigned to three dietary treatments differing only in the type of fat (corn oil/n-6 PUFA, fish oil/n-3 PUFA, or olive oil/n-9 monounsaturated fatty acid). RESULTS: The effects of diet on colonic mucosal gene expression signatures during tumor initiation and progression were subsequently compared (12 h and 10 weeks after azoxymethane injection). Microarray analysis revealed that the number of differentially expressed (DE) genes in each of the three diet comparisons increased with the progression of colon cancer. Each dietary lipid source exhibited its own unique transcriptional profile, as assessed by linear discriminant analysis. Applying this novel approach, we identified the single genes and the two- to three-gene combinations that best distinguished the dietary treatment groups. For the chemoprotective (fish oil) diet, mediators of stem cell homeostasis, e.g., ephrin B1 and bone morphogenic protein 4, were the top-performing gene classifiers. CONCLUSIONS: These results suggest that dietary chemoprotective n-3 PUFA impact genes that regulate the colon stem cell niche and tumor evolution.


Assuntos
Neoplasias do Colo/metabolismo , Dieta , Gorduras Insaturadas na Dieta/farmacologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Animais , Neoplasias do Colo/genética , Óleo de Milho/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Óleos de Peixe/farmacologia , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Azeite de Oliva , Óleos de Plantas/farmacologia , Ratos , Ratos Sprague-Dawley
10.
mBio ; 11(1)2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32071274

RESUMO

A fundamental goal of contemporary biomedical research is to understand the molecular basis of disease pathogenesis and exploit this information to develop targeted and more-effective therapies. Necrotizing myositis caused by the bacterial pathogen Streptococcus pyogenes is a devastating human infection with a high mortality rate and few successful therapeutic options. We used dual transcriptome sequencing (RNA-seq) to analyze the transcriptomes of S. pyogenes and host skeletal muscle recovered contemporaneously from infected nonhuman primates. The in vivo bacterial transcriptome was strikingly remodeled compared to organisms grown in vitro, with significant upregulation of genes contributing to virulence and altered regulation of metabolic genes. The transcriptome of muscle tissue from infected nonhuman primates (NHPs) differed significantly from that of mock-infected animals, due in part to substantial changes in genes contributing to inflammation and host defense processes. We discovered significant positive correlations between group A streptococcus (GAS) virulence factor transcripts and genes involved in the host immune response and inflammation. We also discovered significant correlations between the magnitude of bacterial virulence gene expression in vivo and pathogen fitness, as assessed by previously conducted genome-wide transposon-directed insertion site sequencing (TraDIS). By integrating the bacterial RNA-seq data with the fitness data generated by TraDIS, we discovered five new pathogen genes, namely, S. pyogenes 0281 (Spy0281 [dahA]), ihk-irr, slr, isp, and ciaH, that contribute to necrotizing myositis and confirmed these findings using isogenic deletion-mutant strains. Taken together, our study results provide rich new information about the molecular events occurring in severe invasive infection of primate skeletal muscle that has extensive translational research implications.IMPORTANCE Necrotizing myositis caused by Streptococcus pyogenes has high morbidity and mortality rates and relatively few successful therapeutic options. In addition, there is no licensed human S. pyogenes vaccine. To gain enhanced understanding of the molecular basis of this infection, we employed a multidimensional analysis strategy that included dual RNA-seq and other data derived from experimental infection of nonhuman primates. The data were used to target five streptococcal genes for pathogenesis research, resulting in the unambiguous demonstration that these genes contribute to pathogen-host molecular interactions in necrotizing infections. We exploited fitness data derived from a recently conducted genome-wide transposon mutagenesis study to discover significant correlation between the magnitude of bacterial virulence gene expression in vivo and pathogen fitness. Collectively, our findings have significant implications for translational research, potentially including vaccine efforts.


Assuntos
Fasciite Necrosante/microbiologia , Miosite/microbiologia , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Transcriptoma , Fatores de Virulência/genética , Animais , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Músculo Esquelético/microbiologia , Músculo Esquelético/patologia , Miosite/genética , Miosite/metabolismo , Primatas , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Streptococcus pyogenes/patogenicidade , Virulência/genética , Fatores de Virulência/metabolismo
11.
PLoS One ; 15(3): e0229064, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32214338

RESUMO

Streptococcus pyogenes is a strict human pathogen responsible for more than 700 million infections annually worldwide. Strains of serotype M28 S. pyogenes are typically among the five more abundant types causing invasive infections and pharyngitis in adults and children. Type M28 strains also have an unusual propensity to cause puerperal sepsis and neonatal disease. We recently discovered that a one-nucleotide indel in an intergenic homopolymeric tract located between genes Spy1336/R28 and Spy1337 altered virulence in a mouse model of infection. In the present study, we analyzed size variation in this homopolymeric tract and determined the extent of heterogeneity in the number of tandemly-repeated 79-amino acid domains in the coding region of Spy1336/R28 in large samples of strains recovered from humans with invasive infections. Both repeat sequence elements are highly polymorphic in natural populations of M28 strains. Variation in the homopolymeric tract results in (i) changes in transcript levels of Spy1336/R28 and Spy1337 in vitro, (ii) differences in virulence in a mouse model of necrotizing myositis, and (iii) global transcriptome changes as shown by RNAseq analysis of isogenic mutant strains. Variation in the number of tandem repeats in the coding sequence of Spy1336/R28 is responsible for size variation of R28 protein in natural populations. Isogenic mutant strains in which genes encoding R28 or transcriptional regulator Spy1337 are inactivated are significantly less virulent in a nonhuman primate model of necrotizing myositis. Our findings provide impetus for additional studies addressing the role of R28 and Spy1337 variation in pathogen-host interactions.


Assuntos
Proteínas de Bactérias/genética , Fasciite Necrosante/microbiologia , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/genética , Streptococcus pyogenes/isolamento & purificação , Virulência/genética , Animais , Modelos Animais de Doenças , Fasciite Necrosante/patologia , Regulação Bacteriana da Expressão Gênica , Heterogeneidade Genética , Humanos , Camundongos , Polimorfismo Genético , Infecções Estreptocócicas/patologia , Transcriptoma , Fatores de Virulência/genética
12.
Nat Genet ; 51(3): 548-559, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30778225

RESUMO

Streptococcus pyogenes causes 700 million human infections annually worldwide, yet, despite a century of intensive effort, there is no licensed vaccine against this bacterium. Although a number of large-scale genomic studies of bacterial pathogens have been published, the relationships among the genome, transcriptome, and virulence in large bacterial populations remain poorly understood. We sequenced the genomes of 2,101 emm28 S. pyogenes invasive strains, from which we selected 492 phylogenetically diverse strains for transcriptome analysis and 50 strains for virulence assessment. Data integration provided a novel understanding of the virulence mechanisms of this model organism. Genome-wide association study, expression quantitative trait loci analysis, machine learning, and isogenic mutant strains identified and confirmed a one-nucleotide indel in an intergenic region that significantly alters global transcript profiles and ultimately virulence. The integrative strategy that we used is generally applicable to any microbe and may lead to new therapeutics for many human pathogens.


Assuntos
Genoma Bacteriano/genética , Streptococcus pyogenes/genética , Transcriptoma/genética , Virulência/genética , Regulação Bacteriana da Expressão Gênica/genética , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Filogenia , Locos de Características Quantitativas/genética
13.
Genome Announc ; 5(45)2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29122881

RESUMO

We discovered an emm28 Streptococcus pyogenes isolate causing necrotizing fasciitis in a patient exposed to the floodwaters of Hurricane Harvey in the Houston, TX, metropolitan area in August 2017. The Oxford Nanopore MinION instrument provided sufficient genome sequence data within 1 h of beginning sequencing to close the genome.

14.
Pediatr Infect Dis J ; 36(6): 618-620, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28030528

RESUMO

We report an unusual cluster of invasive group A Streptococcus infections in 6 pediatric patients and demonstrate that the strains were derived from diverse genetic backgrounds, confirming the occurrence of a community cluster rather than a clonal outbreak. Whole genome sequencing provided a rapid and comprehensive view of group A Streptococcus genotypes and helped guide our institutional response and public health maneuvers.


Assuntos
Bacteriemia/microbiologia , DNA Bacteriano/análise , Genoma Bacteriano/genética , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/genética , Adolescente , Antibacterianos/farmacologia , Criança , Pré-Escolar , DNA Bacteriano/genética , Feminino , Humanos , Masculino , Testes de Sensibilidade Microbiana , Análise de Sequência de DNA , Streptococcus pyogenes/efeitos dos fármacos , Streptococcus pyogenes/patogenicidade
15.
mBio ; 7(3)2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27247229

RESUMO

UNLABELLED: For over a century, a fundamental objective in infection biology research has been to understand the molecular processes contributing to the origin and perpetuation of epidemics. Divergent hypotheses have emerged concerning the extent to which environmental events or pathogen evolution dominates in these processes. Remarkably few studies bear on this important issue. Based on population pathogenomic analysis of 1,200 Streptococcus pyogenes type emm89 infection isolates, we report that a series of horizontal gene transfer events produced a new pathogenic genotype with increased ability to cause infection, leading to an epidemic wave of disease on at least two continents. In the aggregate, these and other genetic changes substantially remodeled the transcriptomes of the evolved progeny, causing extensive differential expression of virulence genes and altered pathogen-host interaction, including enhanced immune evasion. Our findings delineate the precise molecular genetic changes that occurred and enhance our understanding of the evolutionary processes that contribute to the emergence and persistence of epidemically successful pathogen clones. The data have significant implications for understanding bacterial epidemics and for translational research efforts to blunt their detrimental effects. IMPORTANCE: The confluence of studies of molecular events underlying pathogen strain emergence, evolutionary genetic processes mediating altered virulence, and epidemics is in its infancy. Although understanding these events is necessary to develop new or improved strategies to protect health, surprisingly few studies have addressed this issue, in particular, at the comprehensive population genomic level. Herein we establish that substantial remodeling of the transcriptome of the human-specific pathogen Streptococcus pyogenes by horizontal gene flow and other evolutionary genetic changes is a central factor in precipitating and perpetuating epidemic disease. The data unambiguously show that the key outcome of these molecular events is evolution of a new, more virulent pathogenic genotype. Our findings provide new understanding of epidemic disease.


Assuntos
Proteínas de Bactérias/genética , Epidemias , Interações Hospedeiro-Patógeno , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/genética , Transcriptoma , Epidemias/prevenção & controle , Evolução Molecular , Transferência Genética Horizontal , Genoma Bacteriano , Genótipo , Humanos , Evasão da Resposta Imune , Polimorfismo de Nucleotídeo Único , Recombinação Genética , Streptococcus pyogenes/imunologia , Streptococcus pyogenes/patogenicidade , Virulência/genética , Fatores de Virulência/genética
16.
PLoS One ; 8(5): e62879, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23690962

RESUMO

Rhodococcus equi is an intracellular bacterium primarily known as an equine pathogen that infects young foals causing a pyogranulomatuous pneumonia. The molecular mechanisms mediating the immune response of foals to R. equi are not fully elucidated. Hence, global genomic high-throughput tools like gene expression microarrays might identify age-related gene expression signatures and molecular pathways that contribute to the immune mechanisms underlying the inherent susceptibility of foals to disease caused by R. equi. The objectives of this study were 2-fold: 1) to compare the expression profiles at specific ages of blood leukocytes from foals stimulated with virulent R. equi with those of unstimulated leukocytes; and, 2) to characterize the age-related changes in the gene expression profile associated with blood leukocytes in response to stimulation with virulent R. equi. Peripheral blood leukocytes were obtained from 6 foals within 24 hours (h) of birth (day 1) and 2, 4, and 8 weeks after birth. The samples were split, such that half were stimulated with live virulent R. equi, and the other half served as unstimulated control. RNA was extracted and the generated cDNA was labeled with fluorescent dyes for microarray hybridizations using an equine microarray. Our findings suggest that there is age-related differential expression of genes involved in host immune response and immunity. We found induction of genes critical for host immunity against pathogens (MHC class II) only at the later time-points (compared to birth). While it appears that foals up to 8-weeks of age are able to initiate a protective inflammatory response against the bacteria, relatively decreased expression of various other immune-related genes points toward inherent diminished immune responses closer to birth. These genes and pathways may contribute to disease susceptibility in foals if infected early in life, and might thus be targeted for developing preventative or therapeutic strategies.


Assuntos
Animais Recém-Nascidos/imunologia , Regulação da Expressão Gênica/fisiologia , Doenças dos Cavalos/imunologia , Doenças dos Cavalos/microbiologia , Leucócitos/microbiologia , Pneumonia Bacteriana/veterinária , Rhodococcus equi , Fatores Etários , Animais , Animais Recém-Nascidos/microbiologia , Perfilação da Expressão Gênica/veterinária , Cavalos , Pneumonia Bacteriana/imunologia , Análise Serial de Proteínas/veterinária , Reação em Cadeia da Polimerase em Tempo Real
17.
PLoS One ; 8(2): e56535, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23409192

RESUMO

Mature mammalian sperm contain a complex population of RNAs some of which might regulate spermatogenesis while others probably play a role in fertilization and early development. Due to this limited knowledge, the biological functions of sperm RNAs remain enigmatic. Here we report the first characterization of the global transcriptome of the sperm of fertile stallions. The findings improved understanding of the biological significance of sperm RNAs which in turn will allow the discovery of sperm-based biomarkers for stallion fertility. The stallion sperm transcriptome was interrogated by analyzing sperm and testes RNA on a 21,000-element equine whole-genome oligoarray and by RNA-seq. Microarray analysis revealed 6,761 transcripts in the sperm, of which 165 were sperm-enriched, and 155 were differentially expressed between the sperm and testes. Next, 70 million raw reads were generated by RNA-seq of which 50% could be aligned with the horse reference genome. A total of 19,257 sequence tags were mapped to all horse chromosomes and the mitochondrial genome. The highest density of mapped transcripts was in gene-rich ECA11, 12 and 13, and the lowest in gene-poor ECA9 and X; 7 gene transcripts originated from ECAY. Structural annotation aligned sperm transcripts with 4,504 known horse and/or human genes, rRNAs and 82 miRNAs, whereas 13,354 sequence tags remained anonymous. The data were aligned with selected equine gene models to identify additional exons and splice variants. Gene Ontology annotations showed that sperm transcripts were associated with molecular processes (chemoattractant-activated signal transduction, ion transport) and cellular components (membranes and vesicles) related to known sperm functions at fertilization, while some messenger and micro RNAs might be critical for early development. The findings suggest that the rich repertoire of coding and non-coding RNAs in stallion sperm is not a random remnant from spermatogenesis in testes but a selectively retained and functionally coherent collection of RNAs.


Assuntos
Cavalos/genética , Análise de Sequência com Séries de Oligonucleotídeos , Sequências Reguladoras de Ácido Ribonucleico/genética , Análise de Sequência de RNA , Espermatozoides/metabolismo , Transcriptoma , Animais , Biomarcadores/metabolismo , Fertilidade/genética , Cavalos/fisiologia , Humanos , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espermatozoides/fisiologia , Cromossomo Y/genética
18.
PLoS One ; 7(12): e51907, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23300577

RESUMO

BACKGROUND: Recent molecular studies have revealed a highly complex bacterial assembly in the canine intestinal tract. There is mounting evidence that microbes play an important role in the pathogenesis of acute and chronic enteropathies of dogs, including idiopathic inflammatory bowel disease (IBD). The aim of this study was to characterize the bacterial microbiota in dogs with various gastrointestinal disorders. METHODOLOGY/PRINCIPAL FINDINGS: Fecal samples from healthy dogs (n = 32), dogs with acute non-hemorrhagic diarrhea (NHD; n = 12), dogs with acute hemorrhagic diarrhea (AHD; n = 13), and dogs with active (n = 9) and therapeutically controlled idiopathic IBD (n = 10) were analyzed by 454-pyrosequencing of the 16S rRNA gene and qPCR assays. Dogs with acute diarrhea, especially those with AHD, had the most profound alterations in their microbiome, as significant separations were observed on PCoA plots of unweighted Unifrac distances. Dogs with AHD had significant decreases in Blautia, Ruminococcaceae including Faecalibacterium, and Turicibacter spp., and significant increases in genus Sutterella and Clostridium perfringens when compared to healthy dogs. No significant separation on PCoA plots was observed for the dogs with IBD. Faecalibacterium spp. and Fusobacteria were, however, decreased in the dogs with clinically active IBD, but increased during time periods of clinically insignificant IBD, as defined by a clinical IBD activity index (CIBDAI). CONCLUSIONS: Results of this study revealed a bacterial dysbiosis in fecal samples of dogs with various GI disorders. The observed changes in the microbiome differed between acute and chronic disease states. The bacterial groups that were commonly decreased during diarrhea are considered to be important short-chain fatty acid producers and may be important for canine intestinal health. Future studies should correlate these observed phylogenetic differences with functional changes in the intestinal microbiome of dogs with defined disease phenotypes.


Assuntos
Biomarcadores/metabolismo , Diarreia/genética , Doenças do Cão/genética , Fezes/microbiologia , Doenças Inflamatórias Intestinais/genética , Metagenoma/fisiologia , Animais , Estudos de Casos e Controles , Diarreia/microbiologia , Diarreia/veterinária , Doenças do Cão/microbiologia , Cães , Fezes/química , Feminino , Perfilação da Expressão Gênica , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/veterinária , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA