Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Extremophiles ; 26(2): 18, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35652980

RESUMO

Hypersaline ecosystems host a particular microbiota, which can be specifically recruited by halophytes. In order to broaden our knowledge of hypersaline ecosystems, an in natura study was conducted on the microbiota associated with the halophyte Halocnemum strobilaceum from alkaline-saline arid soil in Algeria. We collected and identified a total of 414 strains isolated from root tissues (RT), root-adhering soil (RAS), non-adhering rhizospheric soil (NARS) and bulk soil (BS) using different NaCl concentrations. Our data showed that halophilic and halotolerant bacterial isolates in BS and the rhizosphere belonged to 32 genera distributed in Proteobacteria (49%), Firmicutes (36%), Actinobacteria (14%) and Bacteroidetes (1%). Bacterial population size and species diversity were greatly increased in the rhizosphere (factor 100). The reservoir of diversity in BS was dominated by the genera Bacillus and Halomonas. Bacillus/Halomonas ratio decreased with the proximity to the roots from 2.2 in BS to 0.3 at the root surface. Salt screening of the strains showed that species belonging to nine genera were able to grow up to 5.1 M NaCl. Thus, we found that H. strobilaceum exerted a strong effect on the diversity of the recruited microbiota with an affinity strongly attributed to the genus Halomonas.


Assuntos
Microbiota , Rizosfera , Argélia , Bactérias , Plantas Tolerantes a Sal/microbiologia , Cloreto de Sódio , Solo , Microbiologia do Solo
2.
Front Microbiol ; 14: 1098150, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37113232

RESUMO

Over the last 30 years, the description of microbial diversity has been mainly based on culture-independent approaches (metabarcoding and metagenomics) allowing an in-depth analysis of microbial diversity that no other approach allows. Bearing in mind that culture-dependent approaches cannot replace culture-independent approaches, we have improved an original method for isolating strains consisting of "culturing" grains of sand directly on Petri dishes (grain-by-grain method). This method allowed to cultivate up to 10% of the bacteria counted on the surface of grains of the three sites studied in the Great Western Erg in Algeria (Timoudi, Béni Abbès, and Taghit), knowing that on average about 10 bacterial cells colonize each grain. The diversity of culturable bacteria (collection of 290 strains) predicted by 16S rRNA gene sequencing revealed that Arthrobacter subterraneus, Arthrobacter tecti, Pseudarthrobacter phenanthrenivorans, Pseudarthrobacter psychrotolerans, and Massilia agri are the dominant species. The comparison of the culture-dependent and -independent (16S rRNA gene metabarcoding) approaches at the Timoudi site revealed 18 bacterial genera common to both approaches with a relative overestimation of the genera Arthrobacter/Pseudarthrobacter and Kocuria, and a relative underestimation of the genera Blastococcus and Domibacillus by the bacterial culturing approach. The bacterial isolates will allow further study on the mechanisms of tolerance to desiccation, especially in Pseudomonadota (Proteobacteria).

3.
Syst Appl Microbiol ; 41(2): 122-130, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29310897

RESUMO

Fifty-eight rhizobial strains were isolated from root nodules of Vicia faba cv. Equina and Vicia faba cv. Minor by the host-trapping method in soils collected from eleven sites in Bejaia, Eastern Algeria. Eleven genotypic groups were distinguished based on the combined PCR/RFLP of 16S rRNA, 16S-23S rRNA intergenic spacer and symbiotic (nodC and nodD-F) genes and further confirmed by multilocus sequence analysis (MLSA) of three housekeeping genes (recA, atpD and rpoB), the 16S rRNA gene and the nodulation genes nodC and nodD. Of the 11 genotypes, 5 were dominant and 2 were the most represented. Most of the strains shared high nodD gene sequence similarity with Rhizobium leguminosarum sv. viciae; their nodC sequences were similar to both Rhizobium leguminosarum and Rhizobium laguerreae. Sequence analyses of the 16S-23S rRNA intergenic spacer showed that all the new strains were phylogenetically related to those described from Vicia sativa and V. faba in several African, European, American and Asian countries, with which they form a group related to Rhizobium leguminosarum. Phylogenetic analysis based on MLSA of 16S rRNA, recA, atpD and rpoB genes allowed the affiliations of strain AM11R to Rhizobium leguminosarum sv. viciae and of strains EB1 and ES8 to Rhizobium laguerreae. In addition, two separate clades with <97% similarity may represent two novel genospecies within the genus Rhizobium.


Assuntos
Filogenia , Rhizobium leguminosarum/classificação , Rhizobium/classificação , Vicia faba/microbiologia , Argélia , DNA Bacteriano/genética , DNA Espaçador Ribossômico/genética , Genes Bacterianos , Tipagem de Sequências Multilocus , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Rhizobium/genética , Rhizobium/isolamento & purificação , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/isolamento & purificação , Nódulos Radiculares de Plantas/microbiologia , Análise de Sequência de DNA , Simbiose
4.
Res Microbiol ; 156(4): 522-31, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15862451

RESUMO

The production of exopolysaccharides (EPSs) by bacterial populations in the rhizosphere has been demonstrated to contribute to water and nutrient uptake by plant roots through the modification of the physical properties of rhizosphere soil. We report here the characterization of a new EPS produced by a bacterial strain (KYGT207) isolated from an arid soil in southern Algeria (Gassi Touil), and the effect of inoculation of this strain on soil physical properties in the rhizosphere of Triticum durum L. Strain KYGT207 was assigned to the genus Rhizobium by 16S ribosomal DNA sequencing and belongs to a new species closely related to Rhizobium sullae. The EPS produced by this strain was found to be composed of glucose (Glc), galactose (Gal), and mannuronic acid (ManA) in a molar ratio of 2:1:1. The primary structure of the EPS was determined by sugar analysis, 1D and 2D NMR spectroscopy, consisting of a tetrasaccharide repeating unit with the following original structure: [structure: see text]. A rheological analysis showed that this EPS could be considered as a thickening agent with polyelectrolyte properties. Inoculation of wheat plantlets with strain KYGT207 caused significant promotion of plant growth (+85% for shoot dry mass and +56% for root dry mass), a significant increase in root-adhering soil (RAS) dry mass (dm) per root dm (RAS/RT) up to 137%, and in RAS aggregate water stability. We demonstrate that EPS-producing bacteria were present in sandy soils subjected to water stress and that EPS-producing Rhizobium populations play an important role in the rhizosphere through their contribution to soil aggregation.


Assuntos
Polissacarídeos Bacterianos/metabolismo , Rhizobium/fisiologia , Microbiologia do Solo , Triticum/efeitos dos fármacos , Argélia , Sequência de Carboidratos , DNA Bacteriano/genética , Dados de Sequência Molecular , Filogenia , Reguladores de Crescimento de Plantas/farmacologia , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/farmacologia , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , Rhizobium/efeitos dos fármacos , Rhizobium/isolamento & purificação , Triticum/crescimento & desenvolvimento
5.
C R Biol ; 338(5): 335-42, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25836017

RESUMO

Many bacteria possess a natural ability to synthesize and excrete exopolysaccharides which are widely varied in structure and function. These bacteria have the ability to solubilize inorganic phosphorus, which is important to promote growth and increase crop yields. The objective of this study is to select an adaptive strain to the constraints of erratic rainfall and large temperature variations and to determine the possible synergistic effects of its EPS and organic acid on tricalcium phosphate (TCP) solubilization. The strain TF7 isolated from an arid region of Algeria was characterized on the basis of its morphological and physiological traits. Polysaccharide production and the phosphate-solubilizing activity of the strain were evaluated using sucrose and tricalcium phosphate. This EPS was studied by sugar analysis as well as proton NMR spectra. The 16S rRNA gene sequence of this strain shared a similarity of more than 96% with Pseudomonas fluorescens. The maximum polysaccharide productivity was estimated at 4.5g·L(-1) after 5 days. The analyzed sugar was comprised of fructose, glucose, and mannose in a ratio of 4:1:0.6. NMR spectra indicated that the polysaccharide produced by the strain was levan with ß-(2→6)-linked fructose units in accordance with the generally accepted structure. The strain TF7 solubilizes phosphate and forms a clear halo around the colony. The phosphate-solubilizing index is 2.33.


Assuntos
Clima Desértico , Polissacarídeos/química , Pseudomonas fluorescens/metabolismo , Argélia , Fosfatos de Cálcio/metabolismo , Fosfatos de Cálcio/farmacologia , Frutanos/biossíntese , Frutanos/química , Frutose/biossíntese , Genótipo , Glucose/biossíntese , Espectroscopia de Ressonância Magnética , Manose/biossíntese , Polissacarídeos/biossíntese , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Sacarose/farmacologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA