Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nanomedicine ; 11(3): 499-509, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25596075

RESUMO

To improve the delivery and integration of cell therapy using magnetic cell guidance for replacement of corneal endothelium, here we assess magnetic nanoparticles' (MNPs') effects on human corneal endothelial cells (HCECs) in vitro. Biocompatible, 50 nm superparamagnetic nanoparticles endocytosed by cultured HCECs induced no short- or long-term change in viability or identity. Assessment of guidance of the magnetic HCECs in the presence of different magnet shapes and field strengths showed a 2.4-fold increase in delivered cell density compared to gravity alone. After cell delivery, HCECs formed a functional monolayer, with no difference in tight junction formation between MNP-loaded and control HCECs. These data suggest that nanoparticle-mediated magnetic cell delivery may increase the efficiency of cell delivery without compromising HCEC survival, identity or function. Future studies may assess the safety and efficacy of this therapeutic modality in vivo. From the clinical editor: The authors show in this article that magnetic force facilitates the delivery of human corneal endothelial cells loaded by superparamagnetic nanoparticles to cornea, without changing their morphology, identity or functional properties. This novel idea can potentially have vast impact in the treatment of corneal endothelial dystrophies by providing self-endothelial cells after ex-vivo expansion.


Assuntos
Córnea/metabolismo , Células Endoteliais/metabolismo , Campos Magnéticos , Nanopartículas/química , Células Cultivadas , Córnea/citologia , Células Endoteliais/citologia , Células Endoteliais/transplante , Humanos
2.
Methods Mol Biol ; 2708: 11-24, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37558955

RESUMO

The isolation and culturing of rodent retinal ganglion cells (RGC) is a key step in studying the function and cellular response of this crucial cell type. Typical methods used for isolation of RGCs include immunopanning or magnetic bead separation with antibodies targeting RGC specific protein markers. However, in developmental research, many of the most common markers, such as Thy-1, are not expressed in early stages of development. To help study these crucial early stage RGCs, we have developed a novel method that utilizes a transgenic mouse with a GFP tag on the protein BRN3 and a low-pressure fluorescence-activated cell sorter (FACS) system.


Assuntos
Anticorpos , Células Ganglionares da Retina , Animais , Camundongos , Células Ganglionares da Retina/metabolismo , Citometria de Fluxo , Diferenciação Celular , Camundongos Transgênicos , Anticorpos/metabolismo
3.
Front Mol Neurosci ; 16: 1149024, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547921

RESUMO

Purified Retinal Ganglion Cells (RGCs) for in vitro study have been a valuable tool in the study of neural regeneration and in the development of therapies to treat glaucoma. Traditionally, RGCs have been isolated from early postnatal rats and mice, and more recently from human in vitro derived retinal organoids using a two-step immunopanning technique based upon the expression of Thy-1. This technique, however, limits the time periods from which RGCs can be isolated, missing the earliest born RGCs at which time the greatest stage of axon growth occurs, as well as being limited in its use with models of retinal degeneration as Thy-1 is downregulated following injury. While fluorescence associated cell sorting (FACS) in combination with new optogenetically labeled RGCs would be able to overcome this limitation, the use of traditional FACS sorters has been limited to genomic and proteomic studies, as RGCs have little to no survival post-sorting. Here we describe a new method for RGC isolation utilizing a combined immunopanning-fluorescence associated cell sorting (IP-FACS) protocol that initially depletes macrophages and photoreceptors, using immunopanning to enrich for RGCs before using low-pressure FACS to isolate these cells. We demonstrate that RGCs isolated via IP-FACS when compared to RGCs isolated via immunopanning at the same age have similar purity as measured by antibody staining and qRT-PCR; survival as measured by live dead staining; neurite outgrowth; and electrophysiological properties as measured by calcium release response to glutamate. Finally, we demonstrate the ability to isolate RGCs from early embryonic mice prior to the expression of Thy-1 using Brn3b-eGFP optogenetically labeled cells. This method provides a new approach for the isolation of RGCs for the study of early developed RGCs, the study of RGC subtypes and the isolation of RGCs for cell transplantation studies.

4.
Mater Sci Eng C Mater Biol Appl ; 108: 110415, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31924032

RESUMO

Alternatives to donor cornea transplantation based on tissue engineering are desirable to overcome the current severe donor tissue shortage. Many natural polymers have good biological properties but poor mechanical properties and degradation resistance; while synthetic polymers have good mechanical properties but do not contain biochemical molecules normally found in the real tissue. In addition, both fiber orientation and composition play a key role in dictating cell behavior within a scaffold. In this study, the effect on corneal stromal cells of adding decellularized corneal extracellular matrix (ECM) to an electrospun polymer with differing fiber organizations was explored. Electrospun matrices were generated using polycaprolactone (PCL) and PCL combined with ECM and electrospun into random, radial and perpendicularly aligned fiber scaffolds. Human corneal stromal cells were seeded onto these scaffolds and the effect of composition and orientation on the cells phenotype was assessed. Incorporation of ECM into PCL increased hydrophilicity of scaffolds without an adverse effect on Young's modulus. Cells seeded on these matrices adopted different morphologies that followed the orientation of the fibers. Keratocyte markers were increased in all types of scaffolds compared to tissue culture plastic. Scaffolds with radial and perpendicularly aligned fibers promoted enhanced cell migration. Aligned scaffolds with incorporated ECM show promise for their use as cell-free implants that promote endogenous repopulation by neighboring cells.


Assuntos
Substância Própria/citologia , Matriz Extracelular/química , Poliésteres/química , Animais , Movimento Celular/fisiologia , Células Cultivadas , Córnea/citologia , Microscopia Eletroquímica de Varredura , Células PC12 , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier , Engenharia Tecidual/métodos , Alicerces Teciduais/química
5.
Curr Ophthalmol Rep ; 7(1): 21-29, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31667009

RESUMO

PURPOSE: Retinal degenerative diseases lead to the death of retinal neurons causing visual impairment and blindness. In lower order vertebrates, the retina and its surrounding tissue contain stem cell niches capable of regenerating damaged tissue. Here we examine these niches and review their capacity to be used as retinal stem/progenitor cells (RSC/RPCs) for retinal repair. RECENT FINDINGS: Exogenous factors can control the in vitro activation of RSCs/PCs found in several niches within the adult eye including cells in the ciliary margin, the retinal pigment epithelium, iris pigment epithelium as well as the inducement of Müller and amacrine cells within the neural retina itself. Recently, factors have been identified for the activation of adult mammalian Müller cells to a RPC state in vivo. SUMMARY: Whereas cell transplantation still holds potential for retinal repair, activation of the dormant native regeneration process may lead to a more successful process including greater integration efficiency and proper synaptic targeting.

6.
Tissue Eng Part A ; 22(3-4): 286-94, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26729061

RESUMO

Retinal ganglion cells (RGCs) are responsible for the transfer of signals from the retina to the brain. As part of the central nervous system, RGCs are unable to regenerate following injury, and implanted cells have limited capacity to orient and integrate in vivo. During development, secreted guidance molecules along with signals from extracellular matrix and the vasculature guide cell positioning, for example, around the fovea, and axon outgrowth; however, these changes are temporally regulated and are not the same in the adult. Here, we combine electrospun cell transplantation scaffolds capable of RGC neurite guidance with thermal inkjet 3D cell printing techniques capable of precise positioning of RGCs on the scaffold surface. Optimal printing parameters are developed for viability, electrophysiological function and, neurite pathfinding. Different media, commonly used to promote RGC survival and growth, were tested under varying conditions. When printed in growth media containing both brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF), RGCs maintained survival and normal electrophysiological function, and displayed radial axon outgrowth when printed onto electrospun scaffolds. These results demonstrate that 3D printing technology may be combined with complex electrospun surfaces in the design of future retinal models or therapies.


Assuntos
Neuritos/metabolismo , Impressão Tridimensional , Células Ganglionares da Retina , Alicerces Teciduais/química , Animais , Células Cultivadas , Ratos , Ratos Sprague-Dawley , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo
7.
Acta Biomater ; 10(12): 4939-4946, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25194930

RESUMO

Cell transplantation therapies to treat diseases related to dysfunction of retinal ganglion cells (RGCs) are limited in part by an inability to navigate to the optic nerve head within the retina. During development, RGCs are guided by a series of neurotrophic factors and guidance cues; however, these factors and their receptors on the RGCs are developmentally regulated and often not expressed during adulthood. Netrin-1 is a guidance factor capable of guiding RGCs in culture and relevant to guiding RGC axons toward the optic nerve head in vivo. Here we immobilized Netrin-1 using UV-initiated crosslinking to form a gradient capable of guiding the axonal growth of RGCs on a radial electrospun scaffold. Netrin-gradient scaffolds promoted both the percentage of RGCs polarized with a single axon, and also the percentage of cells polarized toward the scaffold center, from 31% to 52%. Thus, an immobilized protein gradient on a radial electrospun scaffold increases RGC axon growth in a direction consistent with developmental optic nerve head guidance, and may prove beneficial for use in cell transplant therapies for the treatment of glaucoma and other optic neuropathies.


Assuntos
Regeneração Tecidual Guiada/instrumentação , Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/farmacocinética , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/fisiologia , Engenharia Tecidual/instrumentação , Alicerces Teciduais , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/farmacocinética , Adsorção , Animais , Animais Recém-Nascidos , Axônios/fisiologia , Axônios/ultraestrutura , Polaridade Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Materiais Revestidos Biocompatíveis/síntese química , Materiais Revestidos Biocompatíveis/farmacocinética , Desenho de Equipamento , Análise de Falha de Equipamento , Camundongos , Netrina-1
8.
Biomaterials ; 34(17): 4242-50, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23489919

RESUMO

Retinal degenerative diseases, such as glaucoma and macular degeneration, affect millions of people worldwide and ultimately lead to retinal cell death and blindness. Cell transplantation therapies for photoreceptors demonstrate integration and restoration of function, but transplantation into the ganglion cell layer is more complex, requiring guidance of axons from transplanted cells to the optic nerve head in order to reach targets in the brain. Here we create a biodegradable electrospun (ES) scaffold designed to direct the growth of retinal ganglion cell (RGC) axons radially, mimicking axon orientation in the retina. Using this scaffold we observed an increase in RGC survival and no significant change in their electrophysiological properties. When analyzed for alignment, 81% of RGCs were observed to project axons radially along the scaffold fibers, with no difference in alignment compared to the nerve fiber layer of retinal explants. When transplanted onto retinal explants, RGCs on ES scaffolds followed the radial pattern of the host retinal nerve fibers, whereas RGCs transplanted directly grew axons in a random pattern. Thus, the use of this scaffold as a cell delivery device represents a significant step towards the use of cell transplant therapies for the treatment of glaucoma and other retinal degenerative diseases.


Assuntos
Fibras Nervosas/fisiologia , Células Ganglionares da Retina/citologia , Engenharia Tecidual/métodos , Animais , Axônios/fisiologia , Sobrevivência Celular , Fenômenos Eletrofisiológicos , Camundongos , Ratos , Ratos Sprague-Dawley , Alicerces Teciduais/química
9.
Expert Rev Ophthalmol ; 7(5): 459-470, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23585772

RESUMO

Retinal degenerations and optic neuropathies often lead to death of photoreceptors or retinal ganglion cells, respectively. Stem cell therapies are showing promise for these diseases in preclinical models and are beginning to transition into human trials, but cell delivery and integration remain major challenges. Focusing on photoreceptor- and progenitor-directed approaches, in this article, the authors review how advances in tissue engineering and cell scaffold design are enhancing cell therapies for retinal degeneration.

10.
J Biomater Sci Polym Ed ; 22(15): 1983-99, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21047446

RESUMO

Surface modifications of polyurethane (PU)-based implantable materials have the potential to enhance or improve hemo- or cellular-biocompatibility. In general, surface modification methods of PU have included surface treatments, physio-adsorption of desired biomolecules, and the covalent immobilization of reactive or therapeutic biomolecules. When multi-protein immobilizations are desired to mimic the enzymatic reactions found on cells and tissues, it is often necessary to design and develop surface modification strategies that will allow the co-immobilization of proteins. In this study, a surface modification strategy is presented that enables the sequential additional of proteins to a bi-dentate moiety grafted onto the PU surface. The modifications were confirmed via IR and XPS signatures. While the strategy presented is applicable to a wide variety of biomolecules, bovine serum albumin (BSA) and human immunoglobulin (hIgG) were selected as model proteins. A total immobilized protein density of 0.298 ± 0.037 µg/cm² was obtained, with nearly equal amounts of protein on each arm of the bi-dentate moiety. Proteins immobilizations were also visualized with immunofluorescent staining. Finally, the method proposed in this study was used to demonstrate a significant increase (P < 0.05) in the catalytic conversion of protein C (PC) to activated PC (APC) using sequentially immobilized thrombomodulin (TM) and endothelial PC receptor (EPCR) as compared to the two proteins immobilized onto a surface in random order.


Assuntos
Materiais Biocompatíveis/química , Proteínas Imobilizadas/química , Poliuretanos/química , Animais , Bovinos , Humanos , Imunoglobulina G/química , Soroalbumina Bovina/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA