Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Mol Cell Biochem ; 451(1-2): 173-184, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30030776

RESUMO

A polysaccharide characterized as galactomannan (GMann) with a molecular weight of 117.76 kDa was isolated from the aqueous extract of Caesalpinia gilliesii (C. gilliesii) seeds then assessed for antiproliferative potential against human hepatocellular carcinoma cell line (HepG2). Further, HCC was induced in Wister albino rats by Diethylnitrosamine (DEN) ip injection (200 mg/kg bw), and CCl4 orally (2 ml/kg bw) for two months then subjected to GMann orally treatment (2 mg/kg bw) for one month. In results, isolated GMann is constituted of sugars (89.99 ± 2.3%), moisture (6.89 ± 0.45%), ash (0.06 ± 0.2%), and protein (2.81%) and composed mainly of mannose and galactose in ratio M/G 3.79. In vitro study, data revealed a concentration-dependent potency of GMann to induce cell death of HepG2 cells with IC50 value of 0.375 µg/ml. Mechanistic studies revealed the potential of GMann to arrest cell cycle at G2/M phase with induction of apoptosis. Biochemical results in vivo showed a significant reduction in serum transaminases (ALT and AST) as well as hepatic malondialdehyde (MDA) and nitric oxide (NOx). Molecular analysis declared a significant down-regulation in mRNA gene expression of both nuclear factor kappa-B (NF-κB) and tumor necrosis factor (TNF-α). Furthermore, a significant down-regulation in the cellular oncogene-fos (C-fos) and marked up-regulation in Glycogen synthase kinase-3 (GSK-3ß) level were observed. These results were supported with histopathological investigation. Whereas GMann improved inflammatory and apoptotic markers, it could be a promising new therapeutic agent for HCC suppression and this warrant further development as a possible drug candidate for HCC.


Assuntos
Apoptose/efeitos dos fármacos , Caesalpinia/química , Carcinoma Hepatocelular/patologia , Inflamação/patologia , Neoplasias Hepáticas/patologia , Fígado/efeitos dos fármacos , Mananas/farmacologia , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/metabolismo , Proliferação de Células , Galactose/análogos & derivados , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/metabolismo , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/metabolismo , Masculino , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar , Células Tumorais Cultivadas
2.
Saudi Pharm J ; 26(3): 349-357, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29556126

RESUMO

Although, fluconazole is widely used in clinical treatment as an antifungal drug, it recorded potential problems as resistance and intracellular accumulation. Female albino mice were injected with single ip dose of Candida albicans (1.5 × 106 CFU). Three weeks post treatment with fluconazole and two novel synthesized compounds [(2-(4-(Pyridin-2-yl) aminosulfonylphenylamino)-6-(naphthalen-2-yl)-4-(pyridin-2-yl) pyridine-3carbonitrile) and (2-(4-(Pyrimidin-2-yl) aminosulfonylphenylamino)-6-(naphthalen-2-yl)-4-(pyridine-2-yl)pyridine-3-carbonitrile) (13b & 14b, respectively)] in both low and high doses (50 mg/kg & 200 mg/kg), liver function and vaginal inflammation were assessed. Candida albicans significantly elevated serum alanine aminotransferase (ALT) and butrylcholinesterase (BCHE) as well as hepatic malondialdehyde (MDA). Molecular analysis confirmed a significant up-regulation in mRNA gene expression of Agglutinin-like sequence (ALS1), hepatic cytochrome p450 (Cyp450). Vaginal COX-2 gene expression was also elevated. Nevertheless, a significant down-regulation was apparent in mice treated with the aforementioned compounds. Meanwhile, administration of 14b in a high dose noticeably down-regulated the altered parameters expression showing a significant effect in comparison to animals treated with the variable doses of the tested compounds. Histopathological finding confirmed the obtained results. The current work investigated the efficiency of new synthetic pyrimidine derivatives 14bas anti-microbial agents and recommended to be improved and evaluated as a novel antifungal drug to overcome the emergence of resistance problem.

3.
J Biochem Mol Toxicol ; 31(7)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28266762

RESUMO

The aim of the current study is to evaluate the efficacy of pretreatment with either l-arginine (L-arg) or Carnosine (Car) and their combination in ameliorating some of the biochemical indices induced in the lung of sodium nitrite (NaNO2 )-intoxicated rats. The results revealed that NaNO2 significantly increased serum tumor necrosis factor-α, C-reactive protein, heat shock proteins-70, vascular endothelial growth factor, and Interleukin 6. Moreover, transforming growth factor-ß, hypoxia-inducible factor, Smad-2, Protein Kinase B (AKT), and Bax were overexpressed, whereas Bcl2 protein was downregulated compared with the normoxic group. The administration of the fore mentioned antioxidants, either alone or in combination, markedly downregulated the previously mentioned inflammatory, apoptotic, as well as the fibrotic markers in lung tissue compared with the NaNO2 -intoxicated rats. The histopathological examination reinforced the previous results. In conclusion, the current data revealed the efficacy of l-arg and Car in ameliorating the pulmonary damage via suppression of the inflammatory markers in response to NaNO2 -intoxication. Interestingly the combination regimen showed the most significant effect.


Assuntos
Antioxidantes/farmacologia , Regulação para Baixo/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Lesão Pulmonar/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/biossíntese , Proteína Smad2/biossíntese , Nitrito de Sódio/toxicidade , Proteína X Associada a bcl-2/biossíntese , Animais , Arginina/farmacologia , Carnosina/farmacologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Masculino , Ratos , Ratos Wistar
4.
J Biochem Mol Toxicol ; 31(8)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28266775

RESUMO

Estimating the ability of bone marrow-derived mesenchymal stem cells (BM-MSCs) to alleviate pulmonary injury induced via isoproterenol (ISP). ISP was injected in a dose of (100 mg/kg, subcutaneously twice at an interval of 24 h). One month post BM-MSCs transplantation by intravenous injection, pulmonary oxidative stress was assessed, and Western blot analyses and histopathological investigations were conducted. Compared with the normal control group, BM-MSCs transplantation significantly decreased the expression of pulmonary anti-oxidative stress marker. Western blot analysis revealed that ISP significantly reduced the protein expression of the anti-oxidative stress marker nuclear related factor-2 (Nrf2). However, the apoptotic marker (caspase-3) and collagen content marker (8-hydroxyproline) were markedly elevated. These biochemical markers were confirmed by histopathological investigations. Finally, it was demonstrated that BM-MSCs transplantation showed a superior effect in improving pulmonary function through alleviating oxidative stress, apoptosis, and collagen content.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/efeitos adversos , Células da Medula Óssea/metabolismo , Caspase 3/metabolismo , Hidroxiprolina/metabolismo , Isoproterenol/efeitos adversos , Lesão Pulmonar , Transplante de Células-Tronco Mesenquimais , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Aloenxertos , Animais , Biomarcadores/metabolismo , Isoproterenol/farmacologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Lesão Pulmonar/terapia , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Ratos
5.
Cell Physiol Biochem ; 35(6): 2402-11, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25896716

RESUMO

BACKGROUND/AIM: The present study investigated the in vitro and in vivo effects of individual and combined doses of idebenone, carnosine and vitamin E on ameliorating some of the biochemical indices of nano-sized titanium dioxide (n-TiO2) in mice liver. METHODS: The in vitro cytotoxic effect of nano-sized anatase TiO2 (21 nm) on hepatic cell lines (HepG 2) was investigated. Additionally, n-TiO2 was orally administered (150 mg/kg/day) for 2 weeks, followed by a daily intragastric gavage of the aforementioned antioxidants for 1 month. RESULTS: n-TiO2 induced significant cytotoxicity in hepatic cell lines and elevated the levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), hepatic total antioxidant capacity (TAC) and nitrite/nitrate (NOx) levels. Meanwhile, glutathione-S-transferase (GST) activity was significantly reduced. Moreover, RT-PCR and western blot analysis showed that n-TiO2 significantly altered the mRNA and protein expressions of transforming growth factor-beta (TGF-ß1) and Smad-2, as well as vascular endothelium growth factor (VEGF). Histopathological examination of hepatic tissue reinforced these results. CONCLUSION: Idebenone, carnosine and vitamin E ameliorated the deviated parameters with the combination regimen demonstrating the most pronounced effect. Oxidative stress, liver fibrosis and angiogenesis may be implicated in n-TiO2-induced liver toxicity.


Assuntos
Inibidores da Angiogênese/farmacologia , Carnosina/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Cirrose Hepática/tratamento farmacológico , Titânio/efeitos adversos , Ubiquinona/análogos & derivados , Vitamina E/farmacologia , Alanina Transaminase/sangue , Animais , Antioxidantes/metabolismo , Aspartato Aminotransferases/sangue , Linhagem Celular Tumoral , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Glutationa Transferase/metabolismo , Células Hep G2 , Humanos , Cirrose Hepática/sangue , Cirrose Hepática/metabolismo , Masculino , Camundongos , Nitratos/metabolismo , Nitritos/metabolismo , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Ubiquinona/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Toxicol Rep ; 12: 338-344, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38544957

RESUMO

MALAT-1 is extremely elevated in human malignancies thus functions as a prognostic biomarker. Nevertheless, limited data has been discovered concerning MALAT's contribution in stomach cancer. MALAT-1 expression appeared considerably greater in gastric cancer (GC) rats with remote miR-122-IGF-1R impact. MALAT-1 depletion inhibited cell cycle development, cell division and invasion, thus boosting death of GC cells. Likewise, miR-122-IGF-1R expression was linked to MALAT-1 deregulations in GC. Biological markers discovery based on biochemical data alongside detailed genome study might enhance prognosis, diagnosis and therapeutic compliance. This article summed up the most recent developments and techniques in GC biomarkers and may have applications for early detection, precise estimation of treatment strategies, and future perspectives according to molecular classification and profiling. In rats, GC was induced by 20-MCA, followed by DOX, Liposomal DOX, and PEGylated-Dox treatment. In addition to histopathological examinations, GC tumor biomarkers such as CEA, CA12-5, KRAS, AKT, PTEN, TP53, JAK-2, lnc- MALAT-1 and miR-122-IGF-1R were tracked. These findings reveal that MALAT-1 may be oncogenic in GC. Prominent MALAT-1 levels may assist as an indicator of metastasis in GC, and that miR-122-IGF-1R expression is associated via reduced MALAT-1 signaling. Finally, PEG-DOX may be an excellent option for GC therapy.

7.
PLoS One ; 19(5): e0302264, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38723038

RESUMO

CRISPR/Cas9 is a recently discovered genomic editing technique that altered scientist's sight in studying genes function. Cas9 is controlled via guide (g) RNAs, which match the DNA targeted in cleavage to modify the respective gene. The development in prostate cancer (PC) modeling directed not only to novel resources for recognizing the signaling pathways overriding prostate cell carcinoma, but it has also created a vast reservoir for complementary tools to examine therapies counteracting this type of cancer. Various cultured somatic rat models for prostate cancer have been developed that nearly mimic human prostate cancer. Nano-medicine can passively target cancer cells via increasing bioavailability and conjugation via specific legend, contributing to reduced systemic side-effects and increased efficacy. This article highlights liposomal loaded Nano-medicine as a potential treatment for prostate cancer and clarifies the CRISPR/Cas9 variation accompanied with prostate cancer. PC is induced experimentally in western rat model via ethinyl estradiol for 4 weeks and SC. dose of 3, 2'- dimethyl-4-aminobiphenyl estradiol (DAE) (50mg/kg) followed by treatment via targeted liposomal-coated compounds such as liposomal dexamethasone (DXM), liposomal doxorubicin (DOX) and liposomal Turmeric (TUR) (3mg/kg IP) for four weeks in a comparative study to their non-targeted analogue dexamethasone, doxorubicin and Turmeric. 3, 2'- dimethyl-4-aminobiphenylestradiol elicit prostate cancer in western rats within 5 months. Simultaneous supplementations with these liposomal compounds influence on prostate cancer; tumor markers were investigated via prostate-specific antigen (PSA), Nitric oxide (NOX) and CRISPR/Cas9 gene editing. Several long non-coding RNAs were reported to be deregulated in prostate cell carcinoma, including MALAT1. On the other hand, gene expression of apoptotic biomarkers focal adhesion kinase (AKT-1), phosphatidylinistol kinase (PI3K) and glycogen synthase kinase-3 (GSK-3) was also investigated and further confirming these results via histopathological examination. Liposomal loaded dexamethasone; doxorubicin and Turmeric can be considered as promising therapeutic agents for prostate cancer via modulating CRISPR/Cas9 gene editing and long non coding gene MALAT1.


Assuntos
Sistemas CRISPR-Cas , Lipossomos , Neoplasias da Próstata , RNA Longo não Codificante , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/diagnóstico , Animais , Ratos , RNA Longo não Codificante/genética , Sistemas CRISPR-Cas/genética , Humanos , Edição de Genes/métodos
8.
Ther Deliv ; : 1-14, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639647

RESUMO

Aim: Drug resistance is still a significant barrier to effective hepatocellular carcinoma therapy. Address the issue of doxorubicin resistance and inter-receptor crosstalk various doxorubicin formulations were investigated. Methods: Hepatocellular carcinoma was carried out using 3-methylechloroanthrene. Animals were then treated with doxorubicin, liposomal doxorubicin, titanium-loaded doxorubicin (TiO2-Dox), lactoferrin-doxorubicin and PEGylated doxorubicin. Biochemical and molecular analyses were assessed. Results: Results have declared a significant alternation of both sodium and potassium concentrations upon 3-methylechloroanthrene administration. Arginase-I and α-L-Fucodinase tumor biomarkers were significantly elevated. C-myc, Hprt-1 and EGFR gene expression were over-expressed. Treatment with the aforementioned treatment regimens significantly modulated all measured parameters. Conclusion: TiO2-Dox, doxorubicin-lactoferrin and PEGylated doxorubicin could be a promising regimen in hepatocellular carcinoma and overcoming the problem of drug resistance.


[Box: see text].

9.
Future Sci OA ; 10(1): FSO934, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827790

RESUMO

Aim: Leukemia is a malignant clonal illness stem from the mutations of hematopoietic cells. Acute lymphoblastic leukemia is one of the utmost prevalent kinds of leukemia, is brought on by atypical lymphoid progenitor cell division in the bone marrow. Materials & methods: A comparative study between, titanium Nanoparticle-loaded doxorubicin or cisplatin and lactoferrin-loaded doxorubicin or cisplatin, on 7,12-dimethylbenz[a]-anthracene (DMBA)-induced leukemia was investigated and confirming the hypothesis that messenger RNA of Hprt/K-RAS/c-Myc/SAT-2/P53/JAK-2 is a forthcoming signaling pathways in leukemia. Results: A significant alteration in Hprt, K-RAS, C-Myc, P53, JAK-2 and SAT-2 genes was observed post DMBA intoxication the aforementioned Nanodrugs modulated these signaling pathways. Conclusion: The carrier-loaded drugs triggered cytotoxicity of cancer cells via enhancing drug efficacy and bio-availability.


Leukemia is the abnormal growth of white blood cells that is responsible for fighting infection. Cisplatin and doxorubicin are commonly used anticancer drugs that can combat leukemic cells however they faced some problems of poor solubility and toxicity to normal cells. Thus we designed nanodrugs as Ti-NPs-cisplatin or DOX and lactoferrin-cisplatin or DOX and compared them with DOX and cisplatin and studied their impact on DMBA-induced leukemia in rat models. Monitoring apoptotic and cell survival genes was performed. Treatment with the nanodrugs could be promising in targeting cancer cells and improving drug bio-availability thus inducing cancer cell death.

10.
Future Sci OA ; 10(1): FSO979, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827789

RESUMO

Aim: To clarify the alternation of gene expression responsible for resistance of Adriamycin (ADR) in rats, in addition to investigation of a novel promising drug-delivery system using titanium dioxide nanoparticles loaded with ADR (TiO2-ADR). Method: Breast cancer was induced in female Sprague-Dawley rats, followed by treatment with ADR (5 mg/kg) or TiO2-ADR (2 mg/kg) for 1 month. Results: Significant improvements in both zinc and calcium levels were observed with TiO2-ADR treatment. Gene expression of ATP-binding cassette transporter membrane proteins (ABCA1 & ABCG1), P53 and Jak-2 showed a significant reduction and overexpression of the C-myc in breast cancer-induced rats. TiO2-ADR demonstrated a notable ability to upregulate these genes. Conclusion: TiO2-ADR could be a promising drug-delivery system for breast cancer therapy.


The current study aimed to investigate a novel and promising drug-delivery system to overcome the resistance problem by loading Adriamycin (ADR) into titanium dioxide nanoparticles (TiO2). The study also aimed to clarify the changes in gene expression responsible for the development of ADR resistance, in a rat model. First, animals were divided into four groups of ten each. Breast cancer was induced in female Sprague-Dawley rats by administering two doses of DMBA (50 and 25 mg/kg), followed by treatment with ADR at a dose of 5 mg/kg for 1 month, or TiO2-ADR at a dose of 2 mg/kg for 1 month. Biochemical and molecular analyses were conducted. Zinc and calcium levels were found to significantly decrease after cancer induction. Treatment with ADR alone or in combination with TiO2 showed a significant improvement in both mineral levels, with the TiO2-ADR group showing superior results. Gene expression of ATP-binding cassette transporter membrane proteins (ABCA1 & ABCG1), P53 and Jak-2 showed a significant decrease after DMBA-induced breast cancer. However, both the ADR- and TiO2-ADR-treated groups showed a notable increase in gene expression, with the TiO2-ADR group showing the highest increase. On the other hand, there was a significant overexpression of the C-myc gene after DMBA-induced breast cancer. However, both ADR and TiO2-ADR treatments resulted in a notable decrease in C-myc gene expression. Based on the data, TiO2-ADR could be a promising drug-delivery system for breast cancer therapy.

11.
Toxicol Rep ; 12: 91-99, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38229920

RESUMO

Autism spectrum disorder, or individual disability (ID), is a condition characterized by complications in social interaction, restricted repetitive behavior, and difficulties in social communication. Neuquinon (NQ) possess a powerful therapeutic potential in various neurodegenerative disease. Nevertheless, contributing to NQ's low water solubility and bioavailability, its medicinal use has been constrained. Liposomes were supposed to be prospective drug-delivering agents for NQ, crossing the blood-brain barrier (BBB), and reaching the target organs. The current investigation aims to track the signaling pathways that govern NQ and liposomal neuquinon (LNQ) action in autistic models generated by ethyl formic acid. The neurotransmitters gamma amino-butyric acid (GABA), acetylcholine (ACh), and acetylcholinesterase (AChE) in addition to, the gene expressions of brain-derived neurotrophic factor (BDNF), cAMP response element-binding protein (CREB), and methyl-CpG-binding protein 2 (MeCP2) and the DNA damage COMET analysis at different time intervals of the study, were assessed. EFA in a dose of 500 mg/kg BW was used to induce autism in rats, and then NQ and LNQ were administered in 10 mg/kg and 2 mg/kg BW, respectively. The results revealed that NQ and LNQ significantly down-regulated BDNF, GABA, and AChE; on the other hand, they up-regulated MeCP2, CREB gene expressions, and ACh action. NQ and LNQ displayed improvement in DNA damage in almost all brain regions after EFA alterations; even better results were noticed post-LNQ therapy. Therefore, it may be concluded that neuquinon and liposomal-loaded neuquinon have a therapeutic index versus EFA-induced autism in a rat model.

12.
Future Sci OA ; 9(8): FSO874, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37621844

RESUMO

Background: Cobalt chloride (CoCl2) is a ferromagnetic ubiquitous trace element extensively dispersed in the environment. Nevertheless, it may merit human hazard. Aim: Excess cobalt can harm vital organs this paves the way to elucidate the toxic impact of CoCl2 on the liver, kidney and heart. Method: CoCl2 was injected in a dose of (60 mg/kg, S.C.) proceeded via Carnosine (200 mg/kg) and/or Arginine (200 mg/kg) treatment 1 month, 24 and 1 h, prior to CoCl2-intoxication. Results: CoCl2 significantly alleviated hemoglobin concentration and BCl2; meanwhile, protein expression of transforming growth factor (TGF-ß), hypoxia-inducible factor (HIF-1α), Mothers against decapentaplegic (Smad-2), AKT protein expression and Bax/Bcl2 ratio was noticeably elevated. Conclusion: The combination of the aforementioned antioxidants exerted a synergistic anti-apoptotic impact in all target tissues.


Cobalt chloride (CoCl2) is commonly found in the environment and used in medicine. However, it can be harmful to our health, particularly when consumed in excessive amounts, leading to damage in important organs. Therefore, we investigated the toxic effects of CoCl2 on the liver, kidney, and heart. We also explored potential treatments using substances like Carnosine and Arginine. We discovered that Arginine and carnosine had a positive effect on certain factors related to the health of the organs. They helped regulate the levels of hemoglobin and BCl2, as well as the expression of proteins such as transforming growth factor (TGF-ß), hypoxia-inducible factor (HIF-1α), Mothers against decapentaplegic (Smad-2), AKT, and apoptotic biomarkers like the Bax/Bcl2 ratio. When these antioxidants were combined, they had a stronger protective effect against cell death and mutations in all the organs studied.

13.
Heliyon ; 9(5): e15692, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37139293

RESUMO

Lipopolysaccharide (LPS) has previously been implicated in insulin resistance by generating an innate immune response and activating inflammatory cascades. Many studies have discovered a relationship between high levels of serum LPS and the advancement of diabetic microvascular problems, indicating that LPS may play a role in the control of critical signaling pathways connected to insulin resistance. The current study focused on signaling pathways linked to insulin resistance and explored probable mechanisms of LPS-induced insulin resistance in a murine model. It next looked at the effects of burdock, bee pollen, and -lipoic acid on LPS-induced inflammation and autoimmune defects in rats. LPS intoxication was induced via ip injection for one week in a dose of 10 mg/kg followed by α-lipoic acid, Burdock and bee pollen in an oral treatment for one month. Following that, biochemical and molecular studies were performed. The RNA expression of the regulating genes STAT5A and PTEN was measured. In addition, ATF-4 and CHOP as autophagy biomarkers were also subjected to mRNA quantification. The results demonstrated a considerable improvement in the -lipoic acid, Burdock, and bee pollen treated groups via modifying oxidative stress indicators as well as molecular ones. Furthermore, glucose concentration in serum and α-amylase were also improved upon treatment with the superiority of α-lipoic acid for modulating all estimated parameters. In conclusion: the results declared in the current study suggested that α-lipoic acid could regulate insulin resistance signaling pathways induced by LPS intoxication.

14.
Toxicol Rep ; 10: 17-26, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36561125

RESUMO

Autism spectrum disorder (ASD) is an extreme neuropsychotic disturbance with both environmental and genetic origins. Sodium propionate (PPA) a metabolic bioproduct of gut microbiota is well-thought-out as a successful autism animal model. Nevertheless, Liposomal drug delivery system possess the advantagous of biocompatibility, targeting organs, ability to carry large drug payloads and skipping macrophages for this purpose the current study was carried out to investigate the hypothesis that Calcium Voltage-Gated channel subunit alpha 1 C (CACNA1C) and glial fibrillary acidic protein (GFAP) signaling pathways crosstalk with the efficacy of Co-enzyme Q10 (Co-Q10) and liposomal loaded Co-enzyme Q10 (L Co-Q10) in PPA mediated autistic rat model. Autism was conducted by buffered PPA (500 mg/Kg b.wt) daily for 5 consecutive days subsequently treatment via Co-Q10 in a dose of (10 mg/kg b.wt) and L Co-Q10 (2 mg/kg b.wt) for four weeks then the autistic model was followed for signs of autism at different time intervals of (one, two and four weeks). The control, PPA intoxicated, and treated groups were subjected to behavioral tests (Y-Maze and open field), antioxidant analysis, gene expression analysis, and histological examination at different time intervals of the study. The results revealed that Co-Q10 and L Co-Q10 significantly elevated antioxidative stress biomarkers, comprising superoxide dismutase (SOD), glutathione (GSH), and total antioxidant capacity (TAC). In addition, they significantly ameliorated the oxidative stress biomarker malondialdehyde (MDA). Meanwhile, they significantly downregulated GFAP and CACNA1C mRNA gene expressions, Co-Q10 and LCo-Q10 showed improvement in almost brain regions post PPA histopathological alterations, even better results were manifested via LCo-Q10 groups. These results showed the superiority of LCo-Q10 over Co-Q10 in competing autism. In conclusion: The administration of anti-inflammatory and antioxidant agents such as Co-Q10 and L Co-Q10 may represent a promising strategy to counteract pathological behaviors in ASD model via targeting organs, increasing retention time, and reducing side effects.

15.
J Trace Elem Med Biol ; 74: 127058, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35952450

RESUMO

BACKGROUND: Mercuric chloride (HgCl3) is categorized as class II B hazardous metal that is present in many occupational and environmental conditions. In the meantime, Hg exists in the environment in such an abundant manner, it is virtually impossible for humans to avoid exposure to different forms of Hg. In addition to environmental exposure, individuals may be exposed to Hg from dental amalgams, medicinal treatments and dietary sources. Nevertheless, Liposomal drug delivery system is a promising era in the field of Nano-medicine and have the advantageous of increasing drug bioavailability and retention phenomena in addition to targeting organ for all mentioned the present study was designed to investigate the hypothesis that messenger RNA gene expression of Signal transducer and activator of transcription- 5 A (STAT-5A), Phosphatase and tensin homolog (PTEN), phosphoinositol kinase (PI3K) and alpha serine/threonine-protein kinase (AKT) can trigger HgCl3 induced nephrotoxicity post Ubidecarenone and liposomal Ubidecarenone therapy. METHODS: HgCl3 toxicity was induced in rats via a dose of 5 mg/kg BW for one week followed by Ubidecarenone and liposomal Ubidecarenone therapy in a dose of 10 & 3 mg/kg BW for one month, respectively. Then kidney function tests, Glutathione and gene expression for PI3K, AKT, PTEN and STAT-5A was investigated. RESULTS: HgCl3 intoxication significantly up regulated PI3K, AKT, PTEN and STAT-5A signaling pathways meanwhile, Ubidecarenone and liposomal- Ubidecarenone treatment significantly reduced PI3K, AKT, PTEN and STAT-5A gene expression post HgCl3 intoxication with the liposomal regimen revealing the most significant impact. Furthermore, renal toxicity was confirmed via monitoring urea and creatinine which were modulated post Ubidecarenone and liposomal-Ubidecarenone treatment. Wide evidence declared that mercuric S-conjugates of small endogenous thiols (such as Hcy, NAC and Cys) are probably the main transportable forms of Hg2+ to the kidneys thus reduced glutathione was investigated which reflected a significant down regulation post Hgcl3 toxicity. CONCLUSION: liposomal drug delivery system including liposomal-Ubidecarenone can be considered as a prospective candidate for treating HgCl3 renal toxicity via modulating STAT-5A, PTEN, PI3K and AKT signaling pathways and via increasing retention time, bioavailability, shielding from macrophage recognition and targeting organs.


Assuntos
Mercúrio , Fosfatidilinositol 3-Quinases , Animais , Creatinina , Amálgama Dentário , Glutationa , Humanos , Cloreto de Mercúrio/toxicidade , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo , Ratos , Fator de Transcrição STAT5 , Transdução de Sinais , Compostos de Sulfidrila , Tensinas/metabolismo , Ubiquinona/análogos & derivados , Ureia
16.
Toxicol Rep ; 9: 1813-1822, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518381

RESUMO

Engineered nanoparticles have been recently utilized in numerous domains particularly, silver nanoparticles (AgNPs). Nonetheless, the possible side effects resulting from AgNPs exposure are not fully clarified. The present study was designed to clarify the toxicity of AgNPs on lung tissue. Furthermore, therapeutic impact of Glycosmis pentaphylla (G. pentaphylla) and Casimiroa edulis (C. edulis) leaves extracts in addition to mucilage and protein (the purified compounds from C. edulis) was investigated against AgNPs induced pulmonary toxicity. Male Swiss albino mice were administered AgNPs orally in two different particle sizes (20 nm and 100 nm) for one month and was further treated via G. pentaphylla, C. edulis, mucilage and protein in a dose of 500 mg/ kg for three weeks. Biochemical, molecular, immunohistochemistry, and histopathological investigations were further assessed. An obvious alteration in oxidative stress biomarkers as well as mRNA gene expression of both survivin and matrix metalloproteinase (MMP-9) was recorded in AgNPs intoxicated group. In addition to, exploration of positive nuclei for Ki-67 was also observed upon AgNPs intoxication. Data declared a significant improvement in the assessed parameters upon G. pentaphylla, C. edulis, mucilage and protein treatment. In conclusion; G. pentaphylla and C. edulis extracts could be considered as a promising candidate as therapeutic regimen against pulmonary toxicity induced via AgNPs due to their enrichment with different active constituents. Practical applications: Due to the expansion of AgNPs applications, it is urgent to investigate their toxic impact associated with release of free silver ions. Different particle sizes of AgNPs can induce various alterations in cellular biochemical parameters, mRNA gene expression, histopathological and immunohistopathological examination. Herein, this natural products extracts are used for the first time as promising therapeutic regimen to ameliorate the toxic effect in AgNPs intoxicated lung tissue in mice model as a result of the bioactive metabolites, especially flavonoids and polyphenolic compounds.

17.
Toxicol Rep ; 9: 2055-2063, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518464

RESUMO

Rapid progress in nano-scales and nanostructure extremely altered the way of diagnosing or preventing numerous diseases. One of the most important nano-medicines used in cancer treatment and diagnosis is silver nanoparticles (AgNPs). Regardless of their extensive utilization, their prospective neurotoxicity wasn't studied yet. Herein, male Swiss Albino mice were intoxicated via two Nano-scales of AgNPs; (20 nm and 100 nm) for one month (100 mg/kg) then treated by leaves extracts of both Casimiroa edulis (C. edulis) and Glycosmis pentaphylla (G. pentaphylla), in addition to, mucilage and protein, the separated compounds from C. edulis fruits and seeds respectively in a dose of (500 mg/kg). Molecular, Biochemical and histopathological examinations were then conducted. Data recorded showed a significant elevation in hydrogen peroxide (H2O2) level and reduction in glutathione peroxidase (GPX) level post AgNPs intoxication. The oxidative stress occurred was modulated upon treatment regimens. Protein expression of C-reactive protein (CRP) showed a significant elevation and Molecular analysis recorded a significant up-regulation in the expression of both Bax and caspace-3 genes upon AgNPs intoxication in both particles size. On the contrary, both Bcl2 and P53 gene expression were shown to be significantly reduced. Treatment by C. edulis, G. pentaphylla, protein and mucilage extracts revealed modulation in apoptotic and pro-apoptotic biomarkers. Histopathological examination confirmed the obtained results. AgNPs exposure could induce neurotoxicity, genetic alternation and oxidative stress; the targeted extracts could be considered as a promising candidate in modulating apoptosis and neurotoxicity induced by AgNPs.

18.
J Genet Eng Biotechnol ; 20(1): 147, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36301384

RESUMO

BACKGROUND: Methotrexate (MX), a competitive inhibitor of dihydrofolate reductase, can inhibit DNA and RNA production and is a powerful anticancer agent widely utilized in clinical practice for treating nonneoplastic maladies, as psoriasis and rheumatoid arthritis; meanwhile, its probable prescription dose and interval of administration are strictly limited due to dose-related organ damage. Former studies verified that kidney, brain, liver, and lung harms are prospective obstacles of methotrexate administration. To understand the machinery of methotrexate-prompt toxicity, various mechanisms were investigated. The former is an autophagy defense mechanism; autophagy is a self-digesting mechanism responsible for the removal of damaged organelles and malformed proteins by lysosome. The contemporary article hypothesized that turmeric or its liposomal analog could defeat autophagy of MX-induced acute toxicity. Methotrexate, in a dose of 1.5 mg/kg, was administered intravenously followed by turmeric and liposomal turmeric treatment in a dose of 5 mg/kg for 30 days in rats. RESULTS: Increment in autophagy (AUTP) consent by MX administration was attenuated by concurrent treatment via turmeric and liposomal turmeric that was reliable on the alteration in apoptotic markers. The assembly of FOXO-3 in serum post methotrexate administration was suppressed by concurrent treatment via liposomal turmeric. Apoptosis/autophagic marker investigation was evaluated through the gene expression of Bax (BCL2-associated X protein)/Bcl2 (B-cell lymphoma 2)/P53 (tumor protein P53)/SiRT-1 (sirtuin silent mating-type information regulation 2 homolog 1) and FOXO-3 (forkhead box transcription factor-3)/ERDJ-4 (endoplasmic reticulum localized DnaJ homologs)/BNP (brain natriuretic peptide B) signaling. The cell death of all cells was categorized to achieve autophagy. Interestingly, Bax/Bcl2/P53/SiRT-1 signaling pathways were downregulated, contributing to inhibiting the initiation of autophagy. Meanwhile, FOXO-3/BNP/ERDJ-4 reduction-implicated noncanonical autophagy pathways were involved in methotrexate-induced autophagy, whereas this change was suppressed when turmeric was administered in liposomal form. CONCLUSION: These outcomes recommended that liposomal turmeric prevents MX-induced acute toxicity through its autophagy, antioxidant, and antiapoptotic properties.

19.
Biol Trace Elem Res ; 199(1): 227-236, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32279189

RESUMO

Aluminum chloride (AlCl3) is commonly used in daily life; meanwhile, it is the potential etiology of various neurodegenerative as well as hepatorenal diseases. Therefore, the present study was carried out to investigate the correlation between AlCl3-induced biochemical alterations and the toxicity induced in various organs such as the brain, liver, and kidney. Male mice received AlCl3 in an oral dose of 50 mg kg-1 in addition to (50 mg) in drinking water for 2 weeks. Two weeks post-AlCl3 intoxication, the brain, liver, and kidney biochemical indices were assessed via molecular and western blot analysis. The results are as follows: AlCl3 intoxication induced a significant elevation in serum malondialdehyde in addition to a significant reduction in serum glutathione (GSH) and superoxide dismutase (SOD) levels. Brain ß-secretase (tubulin-binding protein) and tau proteins which are responsible for the synthesis of ß-amyloid protein that may interfere with neuronal communication in Alzheimer's disease (AD) were also upregulated; regarding hepatic function, AlCl3 elevated serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities. Moreover, it upregulated hepatic mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) protein expressions as well as renal kidney-inducible molecule-1 (KIM-1) which indicated the deleterious effect of AlCl3 on these organs. These results were confirmed by histopathological investigations. So, we hypothesize that acute AlCl3 administration is responsible for oxidative cell damage that interferes with brain function inducing ß-amyloid accumulation, Alzheimer's disease, and neurodegenerative damage as well as hepatorenal injuries.


Assuntos
Secretases da Proteína Precursora do Amiloide , Proteínas Quinases Ativadas por Mitógeno , Alumínio , Cloreto de Alumínio , Compostos de Alumínio/toxicidade , Animais , Cloretos/toxicidade , Fígado , Masculino , Camundongos , Estresse Oxidativo
20.
Biol Trace Elem Res ; 198(1): 157-167, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32016825

RESUMO

The wide application of nanotechnology merits the need to clarify their nanotoxicity. In vivo studies have raised concerns about the toxicity of titanium dioxide nanoparticles (TiO2 NPs), but there are limited data on chromosomal abnormalities induced in hepatic tissue. In this article, the toxicity of three IP doses of TiO2 NPs (80 nm) (50, 250, and 500 mg/kg) through three time intervals (up to 7, 15, and 45 days) on liver tissue was assessed. Hepatic catalase (CAT), glutathione (GSH), nitric oxide (NOx), and malondialdehyde (MDA) levels varied with the administered dose and exposure time of TiO2 NPs. As a result, TiO2 NPs caused a statistically significant decrease in hepatic CAT and GSH activities and a significant alleviation in MDA and NOx levels (p < 0.05), suggesting that the liver exposed to these various doses of TiO2 NPs suffered from severe oxidative stress. The extent of depletion of antioxidant enzymes and the elevation of MDA and NOx in the liver exposed to the highest dose and duration of TiO2 NPs 500 mg for 45 days was the greatest, suggesting that the toxicity might be dose and time dependent. Further, C-reactive protein (CRP) as an inflammatory marker was also alleviated, in addition to the apparent chromosomal aberration and liver pathologies including necrotic and fibrotic hepatocytes after exposure to 250 and 500 mg/kg of TiO2 NPs for 14 and 45 days that were deduced. Hence, nanotechnology-based industries are growing rapidly leading to large-scale production of engineered nanoparticles. They contribute to increased chances of human NPs exposure and health risk.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Proteína C-Reativa/metabolismo , Aberrações Cromossômicas/induzido quimicamente , Humanos , Fígado/metabolismo , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo , Titânio/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA