Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 23(2): 182-188, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182809

RESUMO

Multiferroic materials, particularly those possessing simultaneous electric and magnetic orders, offer a platform for design technologies and to study modern physics. Despite the substantial progress and evolution of multiferroics, one priority in the field remains to be the discovery of unexplored materials, especially those offering different mechanisms for controlling electric and magnetic orders1. Here we demonstrate the simultaneous thermal control of electric and magnetic polarizations in quasi-two-dimensional halides (K,Rb)3Mn2Cl7, arising from a polar-antipolar transition, as evidenced using both X-ray and neutron powder diffraction data. Our density functional theory calculations indicate a possible polarization-switching path including a strong coupling between the electric and magnetic orders in our halide materials, suggesting a magnetoelectric coupling and a situation not realized in oxide analogues. We expect our findings to stimulate the exploration of non-oxide multiferroics and magnetoelectrics to open access to alternative mechanisms, beyond conventional electric and magnetic control, for coupling ferroic orders.

2.
J Am Chem Soc ; 146(17): 11694-11701, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38631694

RESUMO

Perovskite oxyhydrides have attracted recent attention due to their intriguing properties such as ionic conductivity and catalysis, but their repertoire is still restricted compared to perovskite oxynitrides and oxyfluorides. Historically, perovskite oxyhydrides have been prepared mostly by topochemical reactions and high-pressure (HP) reactions, while in this study, we employed a mechanochemical (MC) approach, which enables the synthesis of a series of ABO2H-type oxyhydrides, including those with the tolerance factor (t) much smaller than 1 (e.g., SrScO2H with t = 0.936) which cannot be obtained by HP synthesis. The octahedral tilting, often present in perovskite oxides, does not occur, suggesting that the lack of π-symmetry of the H 1s orbital and the large polarization destabilize tilted low-symmetry structures. Interestingly, SrCrO2H (t = 0.997), previously reported with the HP method, was not achieved with the MC method. A comparative analysis revealed a correlation between the feasibility of MC reactions and the (calculated) shear modulus of the starting reagents (binary oxides and hydrides). Notably, this indicator is not exclusive to oxyhydride perovskites but extends to oxide perovskites (SrMO3). This study demonstrates that MC synthesis offers unique opportunities not only to expand the compositional space in oxyhydrides in various structural types but also to provide a guide for the choice of starting materials for the synthesis of other compounds.

3.
J Am Chem Soc ; 146(6): 3844-3853, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38193701

RESUMO

Developing electrochemical high-energy storage systems is of crucial importance toward a green and sustainable energy supply. A promising candidate is fluoride-ion batteries (FIBs), which can deliver a much higher volumetric energy density than lithium-ion batteries. However, typical metal fluoride cathodes with conversion-type reactions cause a low-rate capability. Recently, layered perovskite oxides and oxyfluorides, such as LaSrMnO4 and Sr3Fe2O5F2, have been reported to exhibit relatively high rate performance and cycle stability compared to typical metal fluoride cathodes with conversion-type reactions, but their discharge capacities (∼118 mA h/g) are lower than those of typical cathodes used in lithium-ion batteries. Here, we show that double-layered perovskite oxyfluoride La1.2Sr1.8Mn2O7-δF2 exhibits (de) intercalation of two fluoride ions to rock-salt slabs and further (de) intercalation of excess fluoride ions to the perovskite layer, leading to a reversible capacity of 200 mA h/g. The additional fluoride-ion intercalation leads to the formation of O-O bond in the structure for charge compensation (i.e., anion redox). These results highlight the layered perovskite oxyfluorides as a new class of active materials for the construction of high-performance FIBs.

4.
J Am Chem Soc ; 146(12): 8320-8326, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38489763

RESUMO

One-dimensional (1D) Heisenberg antiferromagnets are of great interest due to their intriguing quantum phenomena. However, the experimental realization of such systems with large spin S remains challenging because even weak interchain interactions induce long-range ordering. In this study, we present an ideal 1D S = 5/2 spin chain antiferromagnet achieved through a multistep topochemical route involving dehydration and rehydration. By desorbing three water molecules from (2,2'-bpy)FeF3(H2O)·2H2O (2,2'-bpy = 2,2'-bipyridyl) at 150 °C and then intercalating two water molecules at room temperature (giving (2,2'-bpy)FeF3·2H2O 1), the initially isolated FeF3ON2 octahedra combine to form corner-sharing FeF4N2 octahedral chains, which are effectively separated by organic and added water molecules. Mössbauer spectroscopy reveals significant dynamical fluctuations down to 2.7 K, despite the presence of strong intrachain interactions. Moreover, results from electron spin resonance (ESR) and heat capacity measurements indicate the absence of long-range order down to 0.5 K. This controlled topochemical dehydration/rehydration approach is further extended to (2,2'-bpy)CrF3·2H2O with S = 3/2 1D chains, thus opening the possibility of obtaining other low-dimensional spin lattices.

5.
Inorg Chem ; 63(22): 10207-10220, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38767574

RESUMO

We prepared polyoxomolybdates with methylammonium countercations from methylammonium monomolybdate, (CH3NH3)2[MoO4], through two dehydrative condensation methods, acidifying in the aqueous solution and solid-state heating. Discrete (CH3NH3)10[Mo36O112(OH)2(H2O)14], polymeric ((CH3NH3)8[Mo36O112(H2O)14])n, and polymeric ((CH3NH3)4[γ-Mo8O26])n were selectively isolated via pH control of the aqueous (CH3NH3)2[MoO4] solution. The H2SO4-acidified solution of pH < 1 produced "sulfonated α-MoO3", polymeric ((CH3NH3)2[(MoO3)3(SO4)])n. The solid-state heating of (CH3NH3)2[MoO4] in air released methylamine and water to produce several methylammonium polyoxomolybdates in the sequence of discrete (CH3NH3)8[Mo7O24-MoO4], discrete (CH3NH3)6[Mo7O24], discrete (CH3NH3)8[Mo10O34], and polymeric ((CH3NH3)4[γ-Mo8O26])n, before their transformation into molybdenum oxides such as hexagonal-MoO3 and α-MoO3. Notably, some of their polyoxomolybdate structures were different from polyoxomolybdates produced from ammonium molybdates, such as (NH4)2[MoO4] or (NH4)6[Mo7O24], indicating that countercation affected the polyoxomolybdate structure. Moreover, among the tested polyoxomolybdates, (CH3NH3)6[Mo7O24] was the best negative staining reagent for the observation of the SARS-CoV-2 virus using transmission electron microscopy.

6.
Angew Chem Int Ed Engl ; 63(15): e202401779, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38363076

RESUMO

The Li3MX6 compounds (M=Sc, Y, In; X=Cl, Br) are known as promising ionic conductors due to their compatibility with typical metal oxide cathode materials. In this study, we have successfully synthesized γ-Li3ScCl6 using high pressure for the first time in this family. Structural analysis revealed that the high-pressure polymorph crystallizes in the polar and chiral space group P63mc with hexagonal close-packing (hcp) of anions, unlike the ambient-pressure α-Li3ScCl6 and its spinel analog with cubic closed packing (ccp) of anions. Investigation of the known Li3MX6 family further revealed that the cation/anion radius ratio, rM/rX, is the factor that determines which anion sublattice is formed and that in γ-Li3ScCl6, the difference in compressibility between Sc and Cl exceeds the ccp rM/rX threshold under pressure, enabling the ccp-to-hcp conversion. Electrochemical tests of γ-Li3ScCl6 demonstrate improved electrochemical reduction stability. These findings open up new avenues and design principles for lithium solid electrolytes, enabling routes for materials exploration and tuning electrochemical stability without compositional changes or the use of coatings.

7.
J Am Chem Soc ; 145(40): 21807-21816, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37770040

RESUMO

Perovskite oxides ABO3 continue to be a major focus in materials science. Of particular interest is the interplay between A and B cations as exemplified by intersite charge transfer (ICT), which causes novel phenomena including negative thermal expansion and metal-insulator transition. However, the ICT properties were achieved and optimized by cationic substitution or ordering. Here we demonstrate an anionic approach to induce ICT using an oxyhydride perovskite, EuVO2H, which has alternating layers of EuH and VO2. A bulk EuVO2H behaves as a ferromagnetic insulator with a relatively high transition temperature (TC) of 10 K. However, the application of external pressure to the EuIIVIIIO2H bulk or compressive strain from the substrate in the thin films induces ICT from the EuIIH layer to the VIIIO2 layer due to the extended empty V dxy orbital. The ICT phenomenon causes the VO2 layer to become conductive, leading to an increase in TC that is dependent on the number of carriers in the dxy orbitals (up to a factor of 4 for 10 nm thin films). In addition, a large perpendicular magnetic anisotropy appears with the ICT for the films of <100 nm, which is unprecedented in materials with orbital-free Eu2+, opening new perspectives for applications. The present results provide opportunities for the acquisition of novel functions by alternating transition metal/rare earth layers with heteroanions.

8.
Inorg Chem ; 62(20): 7993-8000, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37159274

RESUMO

While cation order-disorder transitions have been extensively investigated because of their decisive impact on chemical and physical properties, only few anion order-disorder transitions are known. Here, we show that Sr2CuO2Cl2-type layered perovskite Sr2LiHOCl2 exhibits a pressure-induced H-/O2- order-disorder transition. When synthesized at ambient and low pressures (≤2 GPa), Sr2LiHOCl2 is isostructural to orthorhombic Eu2LiHOCl2 (Cmcm) with a H-/O2- order at the equatorial sites. However, applying a higher pressure (5 GPa) during synthesis causes the equatorial anions to be disordered, leading to a tetragonal symmetry (I4/mmm) with a loss of the superstructure. The structural analysis revealed that, in the ambient pressure phase, HLi2Sr4 and OLi2Sr4 octahedra have distinct sizes to stabilize otherwise underbonded oxide ions, which is less important at the higher pressure. Anion-disordered Sr2LiHOBr2 and Ba2LiHOCl2 were also obtained at 5 GPa. Given the abundant layer-type anion order in perovskite-based oxyhydrides (e.g., La2LiHO3), the inclusion of additional anions (e.g., chloride) expands the frontiers of anion ordering patterns and their distribution control with the benefit of improving ionic conduction in solids.

9.
Inorg Chem ; 62(17): 6696-6703, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37079628

RESUMO

Lanthanide hydride chalcogenides LnHSe and LnHTe (Ln = lanthanides) crystallize in two polymorphs, 2H and 1H structures (ZrBeSi-type and filled-WC-type structures, respectively), but the chemical origin of the structural selection is unknown. Here, we have expanded the LnHCh (Ch = O, Se, and Te) family to include LnHS (Ln = La, Nd, Gd, and Er) using high-pressure synthesis. LnHS adopts the 2H structure for large Ln (La, Nd, and Gd) and the 1H structure for small Er. We compared the two polymorphs using anion-centered polyhedra and found that in the compounds with large ionicity, the 2H structure with ChLn6 octahedra is stabilized over the 1H structure with ChLn6 trigonal prisms due to relatively small electrostatic repulsion, supported by analysis of Madelung energy, crystal orbital Hamilton population (COHP), and density of energy (DOE).

10.
Angew Chem Int Ed Engl ; 62(30): e202301416, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37070794

RESUMO

Mixed-anion compounds have attracted growing attentions, but their synthesis is challenging, making a rational search desirable. Here, we explored LaF3 -LaX3 (X=Cl, Br, I) system using ab initio structure searches based on evolutionary algorithms, and predicted LaF2 X and LaFX2 (X=Br, I), which are respectively isostructural with LaHBr2 and YH2 I, consisting of layered La-F blocks with single and double ordered honeycomb lattices, separated by van der Waals gaps. We successfully synthesized these compounds: LaF2 Br and LaFI2 crystallize in the predicted structure, while LaF2 I is similar to the predicted one but with different layer stacking. LaF2 I exhibits fluoride ion conductivity comparable to that of non-doped LaF3 , and has the potential to show better ionic conductivity upon appropriate doping, given the theoretically lower diffusion energy barrier and the presence of soft iodine anions. This study shows the structure prediction using evolutionary algorithms will accelerate the discovery of mixed-anion compounds in future, in particular those with an ordered anion arrangement.

11.
Inorg Chem ; 61(18): 7026-7031, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35466674

RESUMO

A layered oxytelluride, Ba2ZnO2Ag2Te2, which consists of alternating stacks of ZnO2 and Ag2Te2 layers with Ba ions in between, has been synthesized via high-pressure reaction. At ambient temperature, it contains discrete [ZnO2]2- linear units similar to Ba2ZnO2Ag2Se2 (Cmca), meaning that the unusual linear coordination around zinc center is stable even when a greater tensile strain is applied by the sandwiched Ag2Te2 layers in addition to barium ions. Upon heating, this compound undergoes an order-disorder phase transition from orthorhombic (Cmca) to tetragonal (I4/mmm) system at 350 K, transforming the ZnO2 lattice in linear coordination into a lattice with disordered oxide ions, suggesting the presence of cis/trans coordination coexistence as well as correlated disorder.

12.
Inorg Chem ; 61(29): 11118-11123, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35802135

RESUMO

Transition-metal oxynitrides have a variety of functions such as visible light-responsive catalysts and dielectric materials, but acquiring single crystals necessary to understand inherent properties is difficult and is limited to relatively small sizes (<10 µm) because they easily decompose at high temperatures. Here, we have succeeded in growing platelet single crystals of TaON with a typical size of 50 × 100 × 10 µm3 under a high pressure and high temperature (6 GPa and 1400 °C) using a LiCl flux. Such a harsh condition, in contrast to powder samples synthesized under mild conditions, resulted in the introduction of a large amount of oxygen vacancies (x = 0.06 in TaO1-xN) into the crystal, providing a metallic behavior with a large anisotropy of ρc/ρab ∼ 103. Low-temperature oxygen annealing allows for a single-crystal-to-single-crystal transformation to obtain fully oxidized TaON (yellow) crystals. Needle-like crystals can be obtained when NH4Cl is used as a flux. Furthermore, black Hf2ON2 single crystals are also grown, suggesting that the high-pressure flux method is widely applicable to other transition-metal oxynitrides, with extensive carrier control.

13.
Inorg Chem ; 61(25): 9816-9822, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35704753

RESUMO

Sillén-Aurivillius layered perovskite oxyhalides Bi4MO8X (M = Nb, Ta; X = Cl, Br) are of great interest because of their potential as lead-free ferroelectrics in addition to their function as visible-light-responsive photocatalysts. In this work, we revisited the crystal structure of Bi4NbO8Br (space group: P21cn), revealing that the intralayer polarization is not based on the reported NbO6 octahedral tilting but is derived from the stereochemically active Bi3+ lone pair electrons (LPEs) and the octahedral off-centering of Nb5+ cations. The revised structure (space group: Ic) has additional interlayer polarizations (calculated: 0.6 µC/cm2), in agreement with recent experiments on Bi4NbO8Br. The occurrence of polarization due to stereochemically active LPEs and Nb-site off-centering is similar to Aurivillius-type ferroelectrics (e.g., Bi2WO6), with comparable spontaneous polarizations in the in-plane direction (calculated: 43.5 µC/cm2). This, together with the out-of-plane polarization, indicates that Sillén-Aurivillius compounds have great potential as ferroelectric materials.

14.
Angew Chem Int Ed Engl ; 61(39): e202209187, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-35929578

RESUMO

Topochemical reactions have led to great progress in the discovery of new metastable compounds with novel chemical and physical properties. With these reactions, the overall crystal structure of the host material is generally maintained. Here we report a topochemical synthesis of a hexagonal nitride hydride, h-Ca3 CrN3 H, by heating an orthorhombic nitride, o-Ca3 CrN3 , under hydrogen at 673 K, accompanied by a rotational structural transformation. The hydrogen intercalation modifies the Ca-N rock-salt-like atomic packing in o-Ca3 CrN3 to a face-sharing octahedral chain in h-Ca3 CrN3 H, mimicking a "hinged tessellation" movement. In addition, the h-Ca3 CrN3 H exhibited stable ammonia synthesis activity when used as a catalyst.

15.
J Am Chem Soc ; 143(22): 8446-8453, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-33998815

RESUMO

The development of semiconductors with narrow band gap and high stability is crucial for achieving solar to chemical energy conversion. Compounds with iodine, which has a high polarizability, have attracted attention because of their narrow band gap and long carrier lifetime, as typified by halide perovskite solar cells; however, they have been regarded as unsuitable for harsh photocatalytic water splitting because iodine is prone to self-oxidation. Here, we demonstrate that Ba2Bi3Nb2O11I, a layered Sillén-Aurivillius oxyiodide, not only has access to a wider range of visible light than its chloride and bromide counterparts, but also functions as a stable photocatalyst, efficiently oxidizing water. Density functional theory calculations reveal that the oxygen 2p orbitals in the perovskite block, rather than the fluorite Bi2O2 block as previously pointed out, anomalously push up the valence band maximum, which can be explained by a modified Madelung potential analysis that takes into account the high polarizability of iodine. In addition, the highly polarizable iodide contributes to longer carrier lifetime of Ba2Bi3Nb2O11I, allowing for a significantly higher quantum efficiency than its chloride and bromide counterparts. Visible-light-driven Z-scheme water splitting was achieved for the first time in an iodine-based system using Ba2Bi3Nb2O11I as an oxygen-evolution photocatalyst. The present study provides a novel approach for incorporating polarizable "soft" anions into building blocks of layered materials to manipulate the band structure and improve the carrier dynamics for visible-light responsive functions.

16.
J Am Chem Soc ; 143(28): 10668-10675, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34228923

RESUMO

To improve ionic conductivity, solid-state electrolytes with polarizable anions that weakly interact with mobile ions have received much attention, a recent example being lithium/sodium-rich antiperovskite M3HCh (M = Li, Na; Ch = S, Se, Te). Herein, in order to clarify the role of anions in antiperovskites, the M3FCh family, in which the polarizable H- anion at the octahedral center is replaced by the ionic F- anion, is investigated theoretically and experimentally. We unexpectedly found that the stronger attractive interaction between F- and M+ ions does not slow down the M+ ion diffusion, with the calculated energy barrier being as low as that of M3HCh. This fact suggests that the low-frequency rotational phonon modes of the octahedron of cubic M3FCh (and M3HCh) are intrinsic to facilitate the fast ionic diffusion. A systematic analysis further reveals a correlation between the tolerance factor t and the ionic transport: as t decreases within the cubic phase, the rotational mode becomes softer, resulting in the reduction of the migration energy. The cubic iodine-doped Li3FSe has a room-temperature ionic conductivity of 5 × 10-5 S/cm with a bulk activation energy of 0.18 eV.

17.
J Am Chem Soc ; 143(6): 2491-2499, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33417448

RESUMO

The discovery of building blocks offers new opportunities to develop and control properties of extended solids. Compounds with fluorite-type Bi2O2 blocks host various properties including lead-free ferroelectrics and photocatalysts. In this study, we show that triple-layered Bi2MO4 blocks (M = Bi, La, Y) in Bi2MO4Cl allow, unlike double-layered Bi2O2 blocks, to extensively control the conduction band. Depending on M, the Bi2MO4 block is truncated by Bi-O bond breaking, resulting in a series of n-zigzag chain structures (n = 1, 2, ∞ for M = Bi, La, Y, respectively). Thus, formed chain structures are responsible for the variation in the conduction band minimum (-0.36 to -0.94 V vs SHE), which is correlated to the presence or absence of mirror symmetry at Bi. Bi2YO4Cl shows higher photoconductivity than the most efficient Bi2O2-based photocatalyst with promising visible-light photocatalytic activity for water splitting. This study expands the possibilities of thickening (2D to 3D) and cutting (2D to 1D) fluorite-based blocks toward desired photocatalysis and other functions.

18.
J Am Chem Soc ; 143(42): 17517-17525, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34647722

RESUMO

Controlling oxygen deficiencies is essential for the development of novel chemical and physical properties such as high-Tc superconductivity and low-dimensional magnetic phenomena. Among reduction methods, topochemical reactions using metal hydrides (e.g., CaH2) are known as the most powerful method to obtain highly reduced oxides including Nd0.8Sr0.2NiO2 superconductor, though there are some limitations such as competition with oxyhydrides. Here we demonstrate that electrochemical protonation combined with thermal dehydration can yield highly reduced oxides: SrCoO2.5 thin films are converted to SrCoO2 by dehydration of HSrCoO2.5 at 350 °C. SrCoO2 forms square (or four-legged) spin tubes composed of tetrahedra, in contrast to the conventional infinite-layer structure. Detailed analyses suggest the importance of the destabilization of the SrCoO2.5 precursor by electrochemical protonation that can greatly alter reaction energy landscape and its gradual dehydration (H1-xSrCoO2.5-x/2) for the SrCoO2 formation. Given the applicability of electrochemical protonation to a variety of transition metal oxides, this simple process widens possibilities to explore novel functional oxides.

19.
Inorg Chem ; 60(11): 8252-8258, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34029076

RESUMO

The B-site sublattice in the double perovskite oxides A2BB'O6 (B: magnetic cation; B': nonmagnetic cation) causes spin frustration, but the relationship between the structure and spin frustration remains unclear although a number of compounds have been studied. The present study systematically investigated A2MnIIB'O6 (S = 5/2) and found that the frustration factor, defined by f = |θW|/TN (θW: Weiss temperature; TN: Néel temperature), scales linearly with the tolerance factor t, i.e., octahedral rotation. Unexpectedly, La2MnTaO5N (space group: P21/n) synthesized under high pressure is more frustrated (f = 6) than oxides with similar t values, despite the large octahedral rotation due to the small t value of 0.914. Structural analysis suggests that the enhanced frustration can be attributed to the site preference of nitride anions at the equatorial positions, which reduces the variance of neighboring Mn-Mn distances. Our findings provide a new guide to control and improve spin frustration in double perovskites with multiple anions.

20.
Inorg Chem ; 60(4): 2228-2233, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33502187

RESUMO

Making and breaking bonds in a solid-state compound greatly influences physical properties. A well-known playground for such bonding manipulation is the ThCr2Si2-type structure AT2X2, allowing a collapse transition where a X-X dimer forms by a chemical substitution or external stimuli. Here, we report a pressure-induced collapse transition in the structurally related BaTi2Pn2O (Pn = As, Sb) at a transition pressure Pc of ∼15 GPa. The Pn-Pn bond formation is related with Pn-p band filling, which is controlled by charge transfer from the Ti-3d band. At Pc, the Sb-Sb distance in BaTi2Sb2O shrinks due to bond formation, but interestingly, the Sb-Sb expands with increasing pressure above Pc. This expansion, which was not reported in ThCr2Si2-type compounds, may arise from heteroleptic coordination geometry around titanium, where a compression of the Ti-O bond plays a role. Electrical resistivity measurements of BaTi2Sb2O up to 55 GPa revealed an increasing trend of the superconducting transition temperature with pressure. This study presents structure motifs that allow flexible bonding manipulation and property control with heteroleptic coordination geometry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA