Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Sci ; 40(1): 151-162, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37872463

RESUMO

The current study was carried out to investigate the anticancer potential of Sauromatum venosum (SV) tuber by gas chromatography with high-resolution mass spectrometry (GC-HRMS) analysis of ethanolic (eSV), hydroalcoholic (hSV), and aqueous extracts (wSV), and in silico study were performed to investigate the main targets of 12-O-acetylingol 8-tiglate by computational docking. The GC-HRMS analysis of three plant samples was carried out on a system equipped with a high-resolution mass spectrometer. The major compounds were identified in all crude extracts. Computation docking analysis was performed for the prediction of the main target of the cancer proliferation of active compound of the Sauromatum venosum tuber extract in cancer therapy. A total of 45 phytocompounds were detected including diterpenoids, esters of fatty acid, hydrocarbons, and alkanes in the tuber of SV. Among all the crude samples tested, eSV showed the lowest IC50 value treated with SaOS2 cells. 12-O-acetylingol 8-tiglate is one of the phytocompounds identified in eSV extract and has been found to exhibit cytotoxic effects against various cancer cells, as reported in the research. It shows the optimum binding affinity with - 8.59 kcal/mol binding energy with a molecular target protein TNF-α (PDB ID: 7PKA). The observed interactions strongly support the anticancer activity of 12-O-acetylingol 8-tiglate and its role in the medicinal efficacy of the plant. These findings highlight the potential of the compound as a valuable source for the development of a therapeutic agent aimed at combating cancer. However, it is important to note that additional in vitro and in vivo studies are required to validate these findings and establish the therapeutic potential.


Assuntos
Antineoplásicos , Neoplasias Ósseas , Lilium , Osteossarcoma , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antineoplásicos/farmacologia
2.
3 Biotech ; 11(2): 94, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33520580

RESUMO

Novel coronavirus disease 2019 (COVID-19) is a positive-sense single-stranded RNA virus which belongs to the Coronaviridae family. COVID-19 outbreak became evident after the severe acute respiratory syndrome coronavirus and the Middle East respiratory syndrome coronavirus in the twenty-first century as the start of the third deadly coronavirus. Currently, research is at an early stage, and the exact etiological dimensions of COVID-19 are unknown. Several candidate drugs and plasma therapy have been considered and evaluated for the treatment of severe COVID-19 patients. These include clinically available drugs such as chloroquine, hydroxychloroquine, and lopinavir/ritonavir. However, understanding the pathogenic mechanisms of this virus is critical for predicting interaction with humans. Based on recent evidence, we have summarized the current virus biology in terms of the possible understanding of the various pathophysiologies, molecular mechanisms, recent efficient diagnostics, and therapeutic approaches to control the disease. In addition, we briefly reviewed the biochemistry of leading candidates for novel therapies and their current status in clinical trials. As information from COVID-19 is evolving rapidly, this review will help the researcher to consider new insights and potential therapeutic approaches based on up-to-date knowledge. Finally, this review illustrates a list of alternative therapeutic solutions for a viral infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA