Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(19): 196402, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38804933

RESUMO

Chiral crystals and molecules were recently predicted to form an intriguing platform for unconventional orbital physics. Here, we report the observation of chirality-driven orbital textures in the bulk electronic structure of CoSi, a prototype member of the cubic B20 family of chiral crystals. Using circular dichroism in soft x-ray angle-resolved photoemission, we demonstrate the formation of a bulk orbital-angular-momentum texture and monopolelike orbital-momentum locking that depends on crystal handedness. We introduce the intrinsic chiral circular dichroism, icCD, as a differential photoemission observable and a natural probe of chiral electron states. Our findings render chiral crystals promising for spin-orbitronics applications.

2.
Nature ; 471(7339): 490-3, 2011 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-21389987

RESUMO

Intense femtosecond (10(-15) s) light pulses can be used to transform electronic, magnetic and structural order in condensed-matter systems on timescales of electronic and atomic motion. This technique is particularly useful in the study and in the control of materials whose physical properties are governed by the interactions between multiple degrees of freedom. Time- and angle-resolved photoemission spectroscopy is in this context a direct and comprehensive, energy- and momentum-selective probe of the ultrafast processes that couple to the electronic degrees of freedom. Previously, the capability of such studies to access electron momentum space away from zero momentum was, however, restricted owing to limitations of the available probing photon energy. Here, using femtosecond extreme-ultraviolet pulses delivered by a high-harmonic-generation source, we use time- and angle-resolved photoemission spectroscopy to measure the photoinduced vaporization of a charge-ordered state in the potential excitonic insulator 1T-TiSe(2 )(refs 12, 13). By way of stroboscopic imaging of electronic band dispersions at large momentum, in the vicinity of the edge of the first Brillouin zone, we reveal that the collapse of atomic-scale periodic long-range order happens on a timescale as short as 20 femtoseconds. The surprisingly fast response of the system is assigned to screening by the transient generation of free charge carriers. Similar screening scenarios are likely to be relevant in other photoinduced solid-state transitions and may generally determine the response times. Moreover, as electron states with large momenta govern fundamental electronic properties in condensed matter systems, we anticipate that the experimental advance represented by the present study will be useful to study the ultrafast dynamics and microscopic mechanisms of electronic phenomena in a wide range of materials.

3.
Opt Lett ; 36(13): 2405-7, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21725426

RESUMO

An advanced type of diffractive optical element is presented that combines the concept of the photon sieve with an off-axis, off-normal incidence reflection geometry. Compared to transmission optical elements, the signal-to-background ratio is significantly increased by separating the first from other diffraction orders without drastically reducing the size of the smallest diffractive element. The reflection photon sieve produces sharp foci at maximum contrast and offers the advantages of effective heat dissipation and a large working space above the focal plane. Experimental results for a device working at a photon energy of 100 eV are presented and compared to theory.

4.
J Phys Chem Lett ; 9(7): 1491-1496, 2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29510617

RESUMO

Understanding and controlling the spin-crossover properties of molecular complexes can be of particular interest for potential applications in molecular spintronics. Using near-edge X-ray absorption fine structure spectroscopy, we investigated these properties for a new vacuum-evaporable Fe(II) complex, namely [Fe(pypyr(CF3)2)2(phen)] (pypyr = 2-(2'-pyridyl)pyrrolide, phen = 1,10-phenanthroline). We find that the spin-transition temperature, well above room temperature for the bulk compound, is drastically lowered for molecules arranged in thin films. Furthermore, while within the experimentally accessible temperature range (2 K < T < 410 K) the bulk material shows indication of neither light-induced excited spin-state trapping nor soft X-ray-induced excited spin-state trapping, these effects are observed for molecules within thin films up to temperatures around 100 K. Thus, by arranging the molecules into thin films, a nominal low-spin complex is effectively transformed into a spin-crossover complex.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA