Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Nature ; 598(7879): 72-75, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34425584

RESUMO

Metal-metal bonding is a widely studied area of chemistry1-3, and has become a mature field spanning numerous d transition metal and main group complexes4-7. By contrast, actinide-actinide bonding, which is predicted to be weak8, is currently restricted to spectroscopically detected gas-phase U2 and Th2 (refs. 9,10), U2H2 and U2H4 in frozen matrices at 6-7 K (refs. 11,12), or fullerene-encapsulated U2 (ref. 13). Furthermore, attempts to prepare thorium-thorium bonds in frozen matrices have produced only ThHn (n = 1-4)14. Thus, there are no isolable actinide-actinide bonds under normal conditions. Computational investigations have explored the probable nature of actinide-actinide bonding15, concentrating on localized σ-, π-, and δ-bonding models paralleling d transition metal analogues, but predictions in relativistic regimes are challenging and have remained experimentally unverified. Here, we report thorium-thorium bonding in a crystalline cluster, prepared and isolated under normal experimental conditions. The cluster exhibits a diamagnetic, closed-shell singlet ground state with a valence-delocalized three-centre-two-electron σ-aromatic bond16,17 that is counter to the focus of previous theoretical predictions. The experimental discovery of actinide σ-aromatic bonding adds to main group and d transition metal analogues, extending delocalized σ-aromatic bonding to the heaviest elements in the periodic table and to principal quantum number six, and constitutes a new approach to elaborate actinide-actinide bonding.

2.
J Am Chem Soc ; 146(18): 12799-12807, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38662638

RESUMO

Alkyl cyclopropyl ketones are introduced as versatile substrates for catalytic formal [3 + 2] cycloadditions with alkenes and alkynes and previously unexplored enyne partners, efficiently delivering complex, sp3-rich products. The key to effectively engaging this relatively unreactive new substrate class is the use of SmI2 as a catalyst in combination with substoichiometric amounts of Sm0; the latter likely acting to prevent catalyst deactivation by returning SmIII to the catalytic cycle. In the absence of Sm0, background degradation of the SmI2 catalyst can outrun product formation. For the most recalcitrant alkyl cyclopropyl ketones, catalysis is "switched-on" using these new robust conditions, and otherwise unattainable products are delivered. Combined experimental and computational studies have been used to identify and probe reactivity trends among alkyl cyclopropyl ketones, including more complex bicyclic alkyl cyclopropyl ketones, which react quickly with various partners to give complex products. In addition to establishing alkyl cyclopropyl ketones as a new substrate class in a burgeoning field of catalysis, our study provides vital mechanistic insight and robust, practical approaches for the nascent field of catalysis with SmI2.

3.
J Am Chem Soc ; 146(15): 10367-10380, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38569081

RESUMO

Comparison of bonding and electronic structural features between trivalent lanthanide (Ln) and actinide (An) complexes across homologous series' of molecules can provide insights into subtle and overt periodic trends. Of keen interest and debate is the extent to which the valence f- and d-orbitals of trivalent Ln/An ions engage in covalent interactions with different ligand donor functionalities and, crucially, how bonding differences change as both the Ln and An series are traversed. Synthesis and characterization (SC-XRD, NMR, UV-vis-NIR, and computational modeling) of the homologous lanthanide and actinide N-heterocyclic carbene (NHC) complexes [M(C5Me5)2(X)(IMe4)] {X = I, M = La, Ce, Pr, Nd, U, Np, Pu; X = Cl, M = Nd; X = I/Cl, M = Nd, Am; and IMe4 = [C(NMeCMe)2]} reveals consistently shorter An-C vs Ln-C distances that do not substantially converge upon reaching Am3+/Nd3+ comparison. Specifically, the difference of 0.064(6) Å observed in the La/U pair is comparable to the 0.062(4) Å difference observed in the Nd/Am pair. Computational analyses suggest that the cause of this unusual observation is rooted in the presence of π-bonding with the valence d-orbital manifold in actinide complexes that is not present in the lanthanide congeners. This is in contrast to other documented cases of shorter An-ligand vs Ln-ligand distances, which are often attributed to increased 5f vs 4f radial diffusivity leading to differences in 4f and 5f orbital bonding involvement. Moreover, in these traditional observations, as the 5f series is traversed, the 5f manifold contracts such that by americium structural studies often find no statistically significant Am3+vs Nd3+ metal-ligand bond length differences.

4.
Chemphyschem ; 24(18): e202300366, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37366275

RESUMO

The tri-thorium cluster [{Th(η8 -C8 H8 )(µ3 -Cl)2 }3 {K(THF)2 }2 ]∞ (Nature 2021, 598, 72-75) was reported to feature intriguing σ-aromatic bonding between the thorium atoms, a mode of metal-metal bonding unique in the actinide series. However, the presence of this bonding motif has since been challenged by others. Here, we computationally explore electron delocalisation in a molecular cluster fragment of [{Th(η8 -C8 H8 )(µ3 -Cl)2 }3 {K(THF)2 }2 ]∞ and examine its responses to an applied magnetic field using a variety of methods. We also discuss the importance of the choice of basis set for the Th atoms and issues regarding locating QTAIM bond critical points. When taken together, the computed data consistently suggest the presence of delocalised Th-Th bonding and Th3 σ-aromaticity.

6.
J Am Chem Soc ; 144(30): 13946-13952, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35858251

RESUMO

Reductive cyclizations of carbonyl compounds, mediated by samarium(II) diiodide (SmI2, Kagan's reagent), represent an invaluable platform to generate molecular complexity in a stereocontrolled manner. In addition to classical ketone and aldehyde substrates, recent advances in radical chemistry allow the cyclization of lactone and lactam-type substrates using SmI2. In contrast, acyclic esters are considered to be unreactive to SmI2 and their participation in reductive cyclizations is unprecedented. Here, we report a diastereoselective radical 1,4-ester migration process, mediated by SmI2, that delivers stereodefined alkene hydrocarboxylation products via radical cyclization of acyclic ester groups in α-carbomethoxy δ-lactones. Isotopic labeling experiments and computational studies have been used to probe the mechanism of the migration. We propose that a switch in conformation redirects single electron transfer from SmI2 to the acyclic ester group, rather than the "more reactive" lactone carbonyl. Our study paves the way for the use of elusive ketyl radicals, derived from acyclic esters, in SmI2-mediated reductive cyclizations.


Assuntos
Ésteres , Samário , Ciclização , Ésteres/química , Iodetos/química , Lactonas/química , Samário/química
7.
Phys Chem Chem Phys ; 24(14): 8245-8250, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35319031

RESUMO

The high alpha-activity of plutonium dioxide (PuO2) results in significant ingrowth of radiogenic helium (He) in the aged material. To safely store/dispose PuO2 or use in applications such as space exploration, the impact of He accumulation needs to be understood. In this work, defect energies obtained using a density functional theory (DFT) + U + D3 scheme are used in a point defect model constructed for PuO2 to predict the method of He incorporation within the PuO2 lattice. The simulations predict that the preferred incorporation site for He in PuO2 is a plutonium vacancy, however, the point defect model indicates that helium will be accommodated as an interstitial irrespective of He concentration and across a wide stoichiometric range. By considering the charge imbalance that arises due to incorporation of Am3+ ions it is shown that He accommodation in oxygen vacancy sites will dominate in PuO2-x as the material ages.

8.
J Am Chem Soc ; 143(26): 9813-9824, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34169713

RESUMO

We report the use of 29Si NMR spectroscopy and DFT calculations combined to benchmark the covalency in the chemical bonding of s- and f-block metal-silicon bonds. The complexes [M(SitBu3)2(THF)2(THF)x] (1-M: M = Mg, Ca, Yb, x = 0; M = Sm, Eu, x = 1) and [M(SitBu2Me)2(THF)2(THF)x] (2-M: M = Mg, x = 0; M = Ca, Sm, Eu, Yb, x = 1) have been synthesized and characterized. DFT calculations and 29Si NMR spectroscopic analyses of 1-M and 2-M (M = Mg, Ca, Yb, No, the last in silico due to experimental unavailability) together with known {Si(SiMe3)3}--, {Si(SiMe2H)3}--, and {SiPh3}--substituted analogues provide 20 representative examples spanning five silanide ligands and four divalent metals, revealing that the metal-bound 29Si NMR isotropic chemical shifts, δSi, span a wide (∼225 ppm) range when the metal is kept constant, and direct, linear correlations are found between δSi and computed delocalization indices and quantum chemical topology interatomic exchange-correlation energies that are measures of bond covalency. The calculations reveal dominant s- and d-orbital character in the bonding of these silanide complexes, with no significant f-orbital contributions. The δSi is determined, relatively, by paramagnetic shielding for a given metal when the silanide is varied but by the spin-orbit shielding term when the metal is varied for a given ligand. The calculations suggest a covalency ordering of No(II) > Yb(II) > Ca(II) ≈ Mg(II), challenging the traditional view of late actinide chemical bonding being equivalent to that of the late lanthanides.

9.
Phys Chem Chem Phys ; 23(7): 4167-4177, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33585844

RESUMO

The geometries, electronic structures and bonding of early actinide-noble gas complexes are studied computationally by density functional and wavefunction theory methods, and by ab initio molecular dynamics. AcHe183+ is confirmed as being an 18-coordinate system, with all of the He atoms accommodated in the primary coordination shell, and this record coordination number is reported for the first time for Th4+ and Th3+. For Pa and U in their group valences of 5 and 6 respectively, the largest number of coordinated He atoms is 17. For AnHe17q+ (An = Ac, q = 3; An = Th, q = 4; An = Pa, q = 5; An = U, q = 6), the average An-He binding energy increases significantly across the series, and correlates linearly with the extent of He → Anq+ charge transfer. The interatomic exchange-correlation term Vxc obtained from the interacting quantum atoms approach correlates linearly with the An-He quantum theory of atoms-in-molecules delocalization index, both indicating that covalency increases from AcHe173+ to UHe176+. The correlation energy in AnHe163+ obtained from MP2 calculations decreases in the order Pa > Th > U > Ac, the same trend found in Vxc. The most stable complexes of Ac3+ with the heavier noble gases Ar-Xe are 12 coordinate, best described as Ng12 cages encapsulating an Ac3+ ion. There is enhanced Ng → Ac3+ charge transfer as the Ng gets heavier, and Ac-Ng covalency increases.

10.
Environ Sci Technol ; 54(11): 6792-6799, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32396341

RESUMO

Naturally occurring minerals, such as the iron sulfide mackinawite, play a key role in the remediation of uranium from groundwater systems. Here, density functional theory (DFT) is used to investigate the interaction of uranium with the most stable surface of stoichiometric mackinawite, {001}-S. The high reactivity of the mineral toward oxygen may affect its ability to sequester uranium; therefore, two models of oxidized mackinawite are also used to study the effect of surface oxidation on adsorption. Weak adsorption of mononuclear uranyl(VI) complexes is found on stoichiometric mackinawite; however, equivalent adsorption modes on the oxidized mackinawite models generally exhibit stronger adsorption. Some of the most energetically stable DFT structures are found to match well with experimental extended X-ray absorption fine structure (EXAFS) data. The implications for the proposed use of mackinawite as a scavenger material for uranium in groundwater systems are discussed.


Assuntos
Urânio , Poluentes Radioativos da Água , Adsorção , Compostos Ferrosos
11.
Environ Sci Technol ; 54(1): 129-136, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31838844

RESUMO

Uranium is a risk-driving radionuclide in both radioactive waste disposal and contaminated land scenarios. In these environments, a range of biogeochemical processes can occur, including sulfate reduction, which can induce sulfidation of iron (oxyhydr)oxide mineral phases. During sulfidation, labile U(VI) is known to reduce to relatively immobile U(IV); however, the detailed mechanisms of the changes in U speciation during these biogeochemical reactions are poorly constrained. Here, we performed highly controlled sulfidation experiments at pH 7 and pH 9.5 on U(VI) adsorbed to ferrihydrite and investigated the system using geochemical analyses, X-ray absorption spectroscopy (XAS), and computational modeling. Analysis of the XAS data indicated the formation of a novel, transient U(VI)-persulfide complex as an intermediate species during the sulfidation reaction, concomitant with the transient release of uranium to the solution. Extended X-ray absorption fine structure (EXAFS) modeling showed that a persulfide ligand was coordinated in the equatorial plane of the uranyl moiety, and formation of this species was supported by computational modeling. The final speciation of U was nanoparticulate U(IV) uraninite, and this phase was evident at 2 days at pH 7 and 1 year at pH 9.5. Our identification of a new, labile U(VI)-persulfide species under environmentally relevant conditions may have implications for U mobility in sulfidic environments pertinent to radioactive waste disposal and contaminated land scenarios.


Assuntos
Ferro , Urânio , Oxirredução , Óxidos , Sulfetos
12.
Phys Chem Chem Phys ; 22(29): 16804-16812, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32662500

RESUMO

Covalency is complex yet central to our understanding of chemical bonding, particularly in the actinide series. Here we assess covalency in a series of isostructural d and f transition element compounds M(OC6H5)4 (M = Ti, Zr, Hf, Ce, Th, Pa, U, Np) using scalar relativistic hybrid density functional theory in conjunction with the Natural Bond Orbital (NBO), quantum theory of atoms in molecules (QTAIM) and interacting quantum atoms (IQA) approaches. The IQA exchange-correlation covalency metric is evaluated for the first time for actinides other than uranium, in order to assess its applicability in the 5f series. It is found to have excellent correlation with NBO and QTAIM covalency metrics, making it a promising addition to the computational toolkit for analysing metal-ligand bonding. Our range of metrics agree that the actinide-oxygen bonds are the most covalent of the elements studied, with those of the heavier group 4 elements the least. Within the early actinide series, Th stands apart from the other three elements considered, being consistently the least covalent.

13.
Angew Chem Int Ed Engl ; 59(23): 8947-8951, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32196886

RESUMO

The "masked" terminal Zn sulfide, [K(2.2.2-cryptand)][Me LZn(S)] (2) (Me L={(2,6-i Pr2 C6 H3 )NC(Me)}2 CH), was isolated via reaction of [Me LZnSCPh3 ] (1) with 2.3 equivalents of KC8 in THF, in the presence of 2.2.2-cryptand, at -78 °C. Complex 2 reacts readily with PhCCH and N2 O to form [K(2.2.2-cryptand)][Me LZn(SH)(CCPh)] (4) and [K(2.2.2-cryptand)][Me LZn(SNNO)] (5), respectively, displaying both Brønsted and Lewis basicity. In addition, the electronic structure of 2 was examined computationally and compared with the previously reported Ni congener, [K(2.2.2-cryptand)][tBu LNi(S)] (tBu L={(2,6-i Pr2 C6 H3 )NC(t Bu)}2 CH).

14.
Angew Chem Int Ed Engl ; 58(18): 6022-6027, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30793462

RESUMO

Assembled from [Th48 Ni6 ] nanocages, the first transition-metal (TM)-thorium metal-organic framework (MOF, 1) has been synthesized and structurally characterized. 1 exhibits high solvent and acid/base stability, and resistance to 400 kGy ß irradiation. Notably, 1 captures ReO4 - (an analogue of radioactive 99 TcO4 - , a key species in nuclear wastes) with a maximum capacity of 807 mg g-1 , falling among the largest values known to date. Furthermore, 1 can enrich methylene blue (MB) and can also serve as an effective and recyclable catalyst for CO2 fixation with epoxides; there is no significant loss of catalytic activity after 10 cycles. Theoretical studies with nucleus-independent chemical shifts and natural bond orbital analysis reveal that the [Th6 O8 ] clusters in 1 have a unique stable electronic structure with (d-p)π aromaticity, partially rationalising 1's stability.

15.
J Am Chem Soc ; 140(5): 1674-1685, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29320850

RESUMO

A series of f-block chromates, CsM(CrO4)2 (M = La, Pr, Nd, Sm, Eu; Am), were prepared revealing notable differences between the AmIII derivatives and their lanthanide analogs. While all compounds form similar layered structures, the americium compound exhibits polymorphism and adopts both a structure isomorphous with the early lanthanides as well as one that possesses lower symmetry. Both polymorphs are dark red and possess band gaps that are smaller than the LnIII compounds. In order to probe the origin of these differences, the electronic structure of α-CsSm(CrO4)2, α-CsEu(CrO4)2, and α-CsAm(CrO4)2 were studied using both a molecular cluster approach featuring hybrid density functional theory and QTAIM analysis and by the periodic LDA+GA and LDA+DMFT methods. Notably, the covalent contributions to bonding by the f orbitals were found to be more than twice as large in the AmIII chromate than in the SmIII and EuIII compounds, and even larger in magnitude than the Am-5f spin-orbit splitting in this system. Our analysis indicates also that the Am-O covalency in α-CsAm(CrO4)2 is driven by the degeneracy of the 5f and 2p orbitals, and not by orbital overlap.

16.
J Am Chem Soc ; 140(51): 17977-17984, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30540455

RESUMO

Evaluating the nature of chemical bonding for actinide elements represents one of the most important and long-standing problems in actinide science. We directly address this challenge and contribute a Cl K-edge X-ray absorption spectroscopy and relativistic density functional theory study that quantitatively evaluates An-Cl covalency in AnCl62- (AnIV = Th, U, Np, Pu). The results showed significant mixing between Cl 3p- and AnIV 5f- and 6d-orbitals (t1u*/t2u* and t2 g*/eg *), with the 6d-orbitals showing more pronounced covalent bonding than the 5f-orbitals. Moving from Th to U, Np, and Pu markedly changed the amount of M-Cl orbital mixing, such that AnIV 6d - and Cl 3p-mixing decreased and metal 5f - and Cl 3p-orbital mixing increased across this series.

17.
Chemistry ; 24(12): 2815-2825, 2018 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-29045764

RESUMO

Recent developments in the chemistry of the transuranic elements are surveyed, with particular emphasis on computational contributions. Examples are drawn from molecular coordination and organometallic chemistry, and from the study of extended solid systems. The role of the metal valence orbitals in covalent bonding is a particular focus, especially the consequences of the stabilization of the 5f orbitals as the actinide series is traversed. The fledgling chemistry of transuranic elements in the +II oxidation state is highlighted. Throughout, the symbiotic interplay of experimental and computational studies is emphasized; the extraordinary challenges of experimental transuranic chemistry afford computational chemistry a particularly valuable role at the frontier of the periodic table.

18.
Chemistry ; 24(2): 347-350, 2018 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-29193336

RESUMO

Inspired by the experimentally synthesized Na12 @[(UO2 )(O2 )1.5 ]208- ("Na12 @U20 ") cluster, we have explored computationally the substitution of the Na cations by many other metals. 6 other M12 @U20 systems are found to be stable (M=K+ , Rb+ , Cs+ , Ag+ , Mg2+ , Fe2+ ). For 3 of these (Mg2+ , Ag+ and Na+ ), the cluster can support a group 16 dianion at its center, forming a new type of Matryoshka ("Russian Doll") actinide nanocluster E@M12 @U20 (E=S2- , Se2- , Te2- , and Po2- ). These systems have 3-shell, onion-like geometries with nearly perfect Ih symmetry. Seeking to create clusters with very high spin ground states, we have replaced M by Mn2+ and U20 by Np20 and Pu20 , generating clusters with maximum possible S values of 80/2 and 100/2 respectively. Only in the presence of a central S2- , however, are these electronic configurations the most stable; the novel Matryoshka Pu nanocluster S@Mn12 @Pu20 is predicted to have the highest ground state spin yet reported for a molecular cluster.

19.
Phys Chem Chem Phys ; 19(7): 5070-5076, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28098321

RESUMO

Compounds featuring unsupported metal-metal bonds between actinide elements remain highly sought after yet confined experimentally to inert gas matrix studies. Notwithstanding this paucity, actinide-actinide bonding has been the subject of extensive computational research. In this contribution, high level quantum chemical calculations at both the scalar and spin-orbit levels are used to probe the Th-Th bonding in a range of zero valent systems of general formula LThThL. Several of these compounds have very short Th-Th bonds arising from a new type of Th-Th quadruple bond with a previously unreported electronic configuration featuring two unpaired electrons in 6d-based δ bonding orbitals. H3AsThThAsH3 is found to have the shortest Th-Th bond yet reported (2.590 Å). The Th2 unit is a highly sensitive probe of ligand electron donor/acceptor ability; we can tune the Th-Th bond from quadruple to triple, double and single by judicious choice of the L group, up to 2.888 Å for singly-bonded ONThThNO.

20.
Angew Chem Int Ed Engl ; 56(25): 7066-7069, 2017 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-28508530

RESUMO

The geometries and electronic structures of molecular ions featuring He atoms complexed to actinide cations are explored computationally using density functional and coupled cluster theories. A new record coordination number is established, as AcHe173+ , ThHe174+ , and PaHe174+ are all found to be true geometric minima, with the He atoms clearly located in the first shell around the actinide. Analysis of AcHen3+ (n=1-17) using the quantum theory of atoms in molecules (QTAIM) confirms these systems as having closed shell, charge-induced dipole bonding. Excellent correlations (R2 >0.95) are found between QTAIM metrics (bond critical point electron densities and delocalization indices) and the average Ac-He distances, and also with the incremental He binding energies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA