Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 24(1): 468, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37605167

RESUMO

BACKGROUND: The evolution of pregnancy-specific glycoprotein (PSG) genes within the CEA gene family of primates correlates with the evolution of hemochorial placentation about 45 Myr ago. Thus, we hypothesized that hemochorial placentation with intimate contact between fetal cells and maternal immune cells favors the evolution and expansion of PSGs. With only a few exceptions, all rodents have hemochorial placentas thus the question arises whether Psgs evolved in all rodent genera. RESULTS: In the analysis of 94 rodent species from 4 suborders, we identified Psg genes only in the suborder Myomorpha in three families (characteristic species in brackets), namely Muridae (mouse), Cricetidae (hamster) and Nesomyidae (giant pouched rat). All Psgs are located, as previously described for mouse and rat, in a region of the genome separated from the Cea gene family locus by several megabases, further referred to as the rodent Psg locus. In the suborders Castorimorpha (beaver), Hystricognatha (guinea pig) and Sciuromorpha (squirrel), neither Psg genes nor so called CEA-related cell adhesion molecule (Ceacam) genes were found in the Psg locus. There was even no evidence for the existence of Psgs in any other genomic region. In contrast to the Psg-harboring rodent species, which do not have activating CEACAMs, we were able to identify Ceacam genes encoding activating CEACAMs in all other rodents studied. In the Psg locus, there are genes encoding three structurally distinct CEACAM/PSGs: (i) CEACAMs composed of one N- and one A2-type domain (CEACAM9, CEACAM15), (ii) composed of two N domains (CEACAM11-CEACAM14) and (iii) composed of three to eight N domains and one A2 domain (PSGs). All of them were found to be secreted glycoproteins preferentially expressed by trophoblast cells, thus they should be considered as PSGs. CONCLUSION: In rodents Psg genes evolved only recently in the suborder Myomorpha shortly upon their most recent common ancestor (MRCA) has coopted the retroviral genes syncytin-A and syncytin-B which enabled the evolution of the three-layered trophoblast. The expansion of Psgs is limited to the Psg locus most likely after a translocation of a CEA-related gene - possibly encoding an ITAM harboring CEACAM. According to the expression pattern two waves of gene amplification occurred, coding for structurally different PSGs.


Assuntos
Glicoproteínas , Roedores , Cricetinae , Feminino , Gravidez , Cobaias , Ratos , Camundongos , Animais , Roedores/genética , Glicoproteínas/genética , Arvicolinae , Transporte Biológico , Amplificação de Genes
2.
PLoS Pathog ; 17(12): e1010107, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34879119

RESUMO

In contrast to wild type bovine viral diarhea virus (BVDV) specific double deletion mutants are not able to establish persistent infection upon infection of a pregnant heifer. Our data shows that this finding results from a defect in transfer of the virus from the mother animal to the fetus. Pregnant heifers were inoculated with such a double deletion mutant or the parental wild type virus and slaughtered pairwise on days 6, 9, 10 and 13 post infection. Viral RNA was detected via qRT-PCR and RNAscope analyses in maternal tissues for both viruses from day 6 p.i. on. However, the double deletion mutant was not detected in placenta and was only found in samples from animals infected with the wild type virus. Similarly, high levels of wild type viral RNA were present in fetal tissues whereas the genome of the double deletion mutant was not detected supporting the hypothesis of a specific inhibition of mutant virus replication in the placenta. We compared the induction of gene expression upon infection of placenta derived cell lines with wild type and mutant virus via gene array analysis. Genes important for the innate immune response were strongly upregulated by the mutant virus compared to the wild type in caruncle epithelial cells that establish the cell layer on the maternal side at the maternal-fetal interface in the placenta. Also, trophoblasts which can be found on the fetal side of the interface showed significant induction of gene expression upon infection with the mutant virus although with lower complexity. Growth curves recorded in both cell lines revealed a general reduction of virus replication in caruncular epithelial cells compared to the trophoblasts. Compared to the wild type virus this effect was dramtic for the mutant virus that reached only a TCID50 of 1.0 at 72 hours post infection.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina/transmissão , Vírus da Diarreia Viral Bovina/genética , Transmissão Vertical de Doenças Infecciosas , Placenta/imunologia , Placenta/virologia , Animais , Bovinos , Feminino , Gravidez , Complicações Infecciosas na Gravidez/imunologia , Complicações Infecciosas na Gravidez/virologia , Replicação Viral
3.
EMBO J ; 37(13)2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29858229

RESUMO

The human gastric pathogen Helicobacter pylori is a major causative agent of gastritis, peptic ulcer disease, and gastric cancer. As part of its adhesive lifestyle, the bacterium targets members of the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family by the conserved outer membrane adhesin HopQ. The HopQ-CEACAM1 interaction is associated with inflammatory responses and enables the intracellular delivery and phosphorylation of the CagA oncoprotein via a yet unknown mechanism. Here, we generated crystal structures of HopQ isotypes I and II bound to the N-terminal domain of human CEACAM1 (C1ND) and elucidated the structural basis of H. pylori specificity toward human CEACAM receptors. Both HopQ alleles target the ß-strands G, F, and C of C1ND, which form the trans dimerization interface in homo- and heterophilic CEACAM interactions. Using SAXS, we show that the HopQ ectodomain is sufficient to induce C1ND monomerization and thus providing H. pylori a route to influence CEACAM-mediated cell adherence and signaling events.


Assuntos
Antígenos CD/fisiologia , Proteínas de Bactérias/fisiologia , Moléculas de Adesão Celular/fisiologia , Helicobacter pylori/fisiologia , Animais , Antígenos CD/química , Proteínas de Bactérias/química , Células CHO , Moléculas de Adesão Celular/química , Linhagem Celular Tumoral , Cricetulus , Humanos , Multimerização Proteica
4.
Reproduction ; 163(2): R11-R23, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35007205

RESUMO

Pregnancy-specific glycoproteins (PSGs) are members of the immunoglobulin superfamily and are closely related to the predominantly membrane-bound CEACAM proteins. PSGs are produced by placental trophoblasts and secreted into the maternal bloodstream at high levels where they may regulate maternal immune and vascular functions through receptor binding and modulation of cytokine and chemokine expression and activity. PSGs may have autocrine and paracrine functions in the placental bed, and PSGs can activate soluble and extracellular matrix bound TGF-ß, with potentially diverse effects on multiple cell types. PSGs are also found at high levels in the maternal circulation, at least in human, where they may have endocrine functions. In a non-reproductive context, PSGs are expressed in the gastrointestinal tract and their deregulation may be associated with colorectal cancer and other diseases. Like many placental hormones, PSGs are encoded by multigene families and they have an unusual phylogenetic distribution, being found predominantly in species with hemochorial placentation, with the notable exception of the horse in which PSG-like proteins are expressed in the endometrial cups of the epitheliochorial placenta. The evolution and expansion of PSG gene families appear to be a highly active process, with significant changes in gene numbers and protein domain structures in different mammalian lineages and reports of extensive copy number variation at the human locus. Against this apparent diversification, the available evidence indicates extensive conservation of PSG functions in multiple species. These observations are consistent with maternal-fetal conflict underpinning the evolution of PSGs.


Assuntos
Variações do Número de Cópias de DNA , Placenta , Animais , Feminino , Glicoproteínas/metabolismo , Cavalos , Mamíferos/metabolismo , Filogenia , Placenta/metabolismo , Placentação , Gravidez , Trofoblastos/metabolismo
5.
BMC Genomics ; 22(1): 128, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602137

RESUMO

BACKGROUND: Pregnancy-specific glycoprotein (PSG) genes belong to the carcinoembryonic antigen (CEA) gene family, within the immunoglobulin gene superfamily. In humans, 10 PSG genes encode closely related secreted glycoproteins. They are exclusively expressed in fetal syncytiotrophoblast cells and represent the most abundant fetal proteins in the maternal blood. In recent years, a role in modulation of the maternal immune system possibly to avoid rejection of the semiallogeneic fetus and to facilitate access of trophoblast cells to maternal resources via the blood system has been suggested. Alternatively, they could serve as soluble pathogen decoy receptors like other members of the CEA family. Despite their clearly different domain organization, similar functional properties have also been observed for murine and bat PSG. As these species share a hemochorial type of placentation and a seemingly convergent formation of PSG genes during evolution, we hypothesized that hemochorial placentae support the evolution of PSG gene families. RESULTS: To strengthen this hypothesis, we have analyzed PSG genes in 57 primate species which exhibit hemochorial or epitheliochorial placentation. In nearly all analyzed apes some 10 PSG genes each could be retrieved from genomic databases, while 6 to 24 PSG genes were found in Old World monkey genomes. Surprisingly, only 1 to 7 PSG genes could be identified in New World monkeys. Interestingly, no PSG genes were found in more distantly related primates with epitheliochorial placentae like lemurs and lorises. The exons encoding the putative receptor-binding domains exhibit strong selection for diversification in most primate PSG as revealed by rapid loss of orthologous relationship during evolution and high ratios of nonsynonymous and synonymous mutations. CONCLUSION: The distribution of trophoblast-specific PSGs in primates and their pattern of selection supports the hypothesis that PSG are still evolving to optimize fetal-maternal or putative pathogen interactions in mammals with intimate contact of fetal cells with the immune system of the mother like in hemochorial placentation.


Assuntos
Glicoproteínas , Placentação , Animais , Feminino , Glicoproteínas/genética , Camundongos , Placenta , Placentação/genética , Gravidez , Primatas/genética , Trofoblastos
6.
Reproduction ; 160(5): 685-694, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33065543

RESUMO

In early equine pregnancy, a highly invasive trophoblast cell subpopulation, the chorionic girdle cells, invade the endometrium and form endometrial cups (EC). These cells express classical MHC molecules, thereby stimulating a humoral and cellular immune response, resulting in a massive accumulation of maternal CD4+ and CD8+ T cells around the EC. Nevertheless, no immediate destruction of endometrial cups by maternal lymphoid cells occurs, presumably due to immune tolerance. Although the environment of EC is rich in TGFB and in FOXP3+, CD4+ T cells, the mechanisms leading to tolerance have not been elucidated. Recently, we discovered that equine trophoblast cells secrete pregnancy-specific glycoproteins (PSGs). Since human and murine PSGs activate latent TGFB, we hypothesized that equine PSGs may have a similar activity. We performed plasmon surface resonance experiments to show that equine PSG CEACAM49 can directly bind to the latency-associated peptide (LAP) of both TGFB1 and TGFB2. We then found that the binding of CEACAM49 leads to the activation of TGFB1 as determined by both ELISA and cell-based assays. Furthermore, the activation of TGFB is a unique function of PSGs within the human CEA family, because CEACAM1, 3, 5, 6, 8 do not activate this cytokine. This finding further strengthens the classification of CEACAM49 as an equine PSG. Based on our results, we hypothesize that activation of latent TGFB in the EC environment by equine PSGs secreted by invasive trophoblast cells, could contribute to the generation of regulatory T cells (Tregs) to maintain immune tolerance.


Assuntos
Antígeno Carcinoembrionário/metabolismo , Endométrio/metabolismo , Glicoproteínas/metabolismo , Linfócitos T Reguladores/imunologia , Fator de Crescimento Transformador beta1/metabolismo , Trofoblastos/metabolismo , Animais , Endométrio/imunologia , Endométrio/patologia , Feminino , Cavalos , Gravidez , Fator de Crescimento Transformador beta1/genética , Trofoblastos/imunologia , Trofoblastos/patologia
7.
BMC Evol Biol ; 18(1): 32, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29544443

RESUMO

BACKGROUND: The CEA gene family is one of the most rapidly evolving gene families in the human genome. The founder gene of the family is thought to be an ancestor of the inhibitory immune checkpoint molecule CEACAM1. Comprehensive analyses of mammalian genomes showed that the CEA gene family is subject to tremendous gene family expansion and contraction events in different mammalian species. While in some species (e.g. rabbits) less than three CEACAM1 related genes exist, were in others (certain microbat species) up to 100 CEACAM1 paralogs identified. We have recently reported that the horse has also an extended CEA gene family. Since mechanisms of gene family expansion and diversification are not well understood we aimed to analyze the equine CEA gene family in detail. RESULTS: We found that the equine CEA gene family contains 17 functional CEACAM1-related genes. Nine of them were secreted molecules and eight CEACAMs contain transmembrane and cytoplasmic domain exons, the latter being in the focus of the present report. Only one (CEACAM41) gene has exons coding for activating signaling motifs all other CEACAM1 paralogs contain cytoplasmic exons similar to that of the inhibitory receptor CEACAM1. However, cloning of cDNAs showed that only one CEACAM1 paralog contain functional immunoreceptor tyrosine-based inhibitory motifs in its cytoplasmic tail. Three receptors have acquired a stop codon in the transmembrane domain and two have lost their inhibitory motifs due to alternative splicing events. In addition, alternative splicing eliminated the transmembrane exon sequence of the putative activating receptor, rendering it to a secreted molecule. Transfection of eukaryotic cells with FLAG-tagged alternatively spliced CEACAMs indicates that they can be expressed in vivo. Thus detection of CEACAM41 mRNA in activated PBMC suggests that CEACAM41 is secreted by lymphoid cells upon activation. CONCLUSIONS: The results of our study demonstrate that alternative splicing after gene duplication is a potent mechanism to accelerate functional diversification of the equine CEA gene family members. This potent mechanism has created novel CEACAM receptors with unique signaling capacities and secreted CEACAMs which potentially enables equine lymphoid cells to control distantly located immune cells.


Assuntos
Processamento Alternativo/genética , Antígenos CD/genética , Moléculas de Adesão Celular/genética , Duplicação Gênica , Variação Genética , Cavalos/genética , Homologia de Sequência do Ácido Nucleico , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Antígenos CD/química , Sequência de Bases , Moléculas de Adesão Celular/química , Códon/genética , Éxons/genética , Humanos , Leucócitos Mononucleares/metabolismo , Domínios Proteicos , Isoformas de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Coelhos
8.
BMC Genomics ; 18(1): 717, 2017 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-28893191

RESUMO

BACKGROUND: Expansions of gene families are predictive for ongoing genetic adaptation to environmental cues. We describe such an expansion of the carcinoembryonic antigen (CEA) gene family in certain bat families. Members of the CEA family in humans and mice are exploited as cellular receptors by a number of pathogens, possibly due to their function in immunity and reproduction. The CEA family is composed of CEA-related cell adhesion molecules (CEACAMs) and secreted pregnancy-specific glycoproteins (PSGs). PSGs are almost exclusively expressed by trophoblast cells at the maternal-fetal interface. The reason why PSGs exist only in a minority of mammals is still unknown. RESULTS: Analysis of the CEA gene family in bats revealed that in certain bat families, belonging to the subgroup Yangochiroptera but not the Yinpterochiroptera subgroup an expansion of the CEA gene family took place, resulting in approximately one hundred CEA family genes in some species of the Vespertilionidae. The majority of these genes encode secreted PSG-like proteins (further referred to as PSG). Remarkably, we found strong evidence that the ligand-binding domain (IgV-like domain) of PSG is under diversifying positive selection indicating that bat PSGs may interact with structurally highly variable ligands. Such ligands might represent bacterial or viral pathogen adhesins. We have identified two distinct clusters of PSGs in three Myotis species. The two PSG cluster differ in the amino acids under positive selection. One cluster was only expanded in members of the Vespertilionidae while the other was found to be expanded in addition in members of the Miniopteridae and Mormoopidae. Thus one round of PSG expansion may have occurred in an ancestry of all three families and a second only in Vespertilionidae. Although maternal ligands of PSGs may exist selective challenges by two distinct pathogens seem to be likely responsible for the expansion of PSGs in Vespertilionidae. CONCLUSIONS: The rapid expansion of PSGs in certain bat species together with selection for diversification suggest that bat PSGs could be part of a pathogen defense system by serving as decoy receptors and/or regulators of feto-maternal interactions.


Assuntos
Absorção Fisiológica , Antígeno Carcinoembrionário/genética , Antígeno Carcinoembrionário/metabolismo , Quirópteros/genética , Quirópteros/fisiologia , Evolução Molecular , Regulação da Expressão Gênica , Sequência de Aminoácidos , Animais , Sequência de Bases , Antígeno Carcinoembrionário/química , Filogenia , Homologia de Sequência do Ácido Nucleico
9.
BMC Vet Res ; 13(1): 5, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-28056961

RESUMO

BACKGROUND: Non-invasive sampling techniques based on the analysis of oral fluid specimen have gained substantial importance in the field of swine herd management. Methodological advances have a focus on endemic viral diseases in commercial pig production. More recently, these approaches have been adapted to non-invasive sampling of wild boar for transboundary animal disease detection for which these effective population level sampling methods have not been available. In this study, a rope-in-a-bait based oral fluid sampling technique was tested to detect classical swine fever virus nucleic acid shedding from experimentally infected domestic pigs. RESULTS: Separated in two groups treated identically, the course of the infection was slightly differing in terms of onset of the clinical signs and levels of viral ribonucleic acid detection in the blood and oral fluid. The technique was capable of detecting classical swine fever virus nucleic acid as of day 7 post infection coinciding with the first detection in conventional oropharyngeal swab samples from some individual animals. Except for day 7 post infection in the "slower onset group", the chances of classical swine fever virus nucleic acid detection in ropes were identical or higher as compared to the individual sampling. CONCLUSIONS: With the provided evidence, non-invasive oral fluid sampling at group level can be considered as additional cost-effective detection tool in classical swine fever prevention and control strategies. The proposed methodology is of particular use in production systems with reduced access to veterinary services such as backyard or scavenging pig production where it can be integrated in feeding or baiting practices.


Assuntos
Peste Suína Clássica/diagnóstico , RNA Viral/química , Saliva/química , Manejo de Espécimes/veterinária , Animais , Peste Suína Clássica/virologia , RNA Viral/sangue , RNA Viral/isolamento & purificação , Manejo de Espécimes/instrumentação , Suínos , Eliminação de Partículas Virais
10.
BMC Genomics ; 17(1): 928, 2016 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-27852220

RESUMO

BACKGROUND: In mammals, CEACAM1 and closely related members represent paired receptors with similar extracellular ligand-binding regions and cytoplasmic domains with opposing functions. Human CEACAM1 and CEACAM3 which have inhibitory ITIM/ITSM and activating ITAM-like motifs, respectively, in their cytoplasmic regions are such paired receptors. Various bacterial pathogens bind to CEACAM1 on epithelial and immune cells facilitating both entry into the host and down-regulation of the immune response whereas interaction with granulocyte-specific CEACAM3 leads to their uptake and destruction. It is unclear whether paired CEACAM receptors also exist in other vertebrate clades. RESULTS: We identified more than 80 ceacam genes in Xenopus tropicalis and X. laevis. They consist of two subgroups containing one or two putative paired receptor pairs each. Analysis of genomic sequences of paired receptors provide evidence that their highly similar ligand binding domains were adjusted by recent gene conversion events. In contrast, selection for diversification is observed among inhibitory receptor orthologs of the two frogs which split some 60 million years ago. The allotetraploid X. laevis arose later by hybridization of two closely related species. Interestingly, despite the conservation of the genomic landscape surrounding the homeologous ceacam loci only one locus resembles the one found in X. tropicalis. From the second X. laevis locus more than 80 % of the ceacam genes were lost including 5 of the 6 paired receptor genes. This suggests that once the gene for one of the paired receptors is lost the remaining gene cluster degrades rapidly probably due to lack of selection pressure exerted by pathogens. CONCLUSIONS: The presence of paired receptors and selection for diversification suggests that also in amphibians CEACAM1-related inhibitory proteins are or were used as pathogen receptors.


Assuntos
Antígeno Carcinoembrionário/metabolismo , Moléculas de Adesão Celular/metabolismo , Xenopus/metabolismo , Sequência de Aminoácidos , Animais , Antígeno Carcinoembrionário/classificação , Antígeno Carcinoembrionário/genética , Moléculas de Adesão Celular/classificação , Moléculas de Adesão Celular/genética , Evolução Molecular , Humanos , Hibridização Genética , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Tetraploidia
11.
Eur J Immunol ; 45(7): 2134-42, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25824372

RESUMO

Carcinoembryonicantigen-related cell adhesion molecule 1 (CEACAM1) is a receptor involved in the regulation of NK-cell function. In most species, the CEACAM1 cytoplasmic tail possesses a membrane-proximal ITIM paired with a membrane-distal immunoreceptor tyrosine-based switch motif (ITSM) signaling motif. Human CEACAM1 has phylogenetically relatively recently acquired a second ITIM instead of the ITSM and was shown to inhibit NKG2D-mediated NK-cell activation. Here, we compare the function of bovine and human CEACAM1. We show that in addition to NKG2D, human CEACAM1 can inhibit NK-cell activation via NKp30 or 2B4. Bovine CEACAM1, possessing an ITIM and an ITSM signaling motif, is also inhibitory. However, bovine CEACAM1 inhibition of NKp30-mediated lysis is less pronounced compared with its human counterpart. Bovine CEACAM1 inhibition is dependent on the membrane-proximal ITIM and our data suggest that also the membrane distal ITSM motif contributes to inhibitory signaling. Biochemically, human and bovine CEACAM1 can recruit the phosphatases SHP-1 and SHP-2 after receptor phosphorylation to a similar extend. Bovine CEACAM1 can additionally recruit the adapter molecule Ewing's sarcoma virus-activated transcript-2 (EAT-2), but not SLAM-associated protein (SAP). Taken together, we show that although human and bovine CEACAM1 are differentially equipped with ITIM and ITSM motifs, both receptors can inhibit NKp30 and 2B4 activation of NK cells.


Assuntos
Antígenos CD/imunologia , Moléculas de Adesão Celular/imunologia , Evolução Molecular , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Receptor 3 Desencadeador da Citotoxicidade Natural/imunologia , Receptores Imunológicos/imunologia , Animais , Western Blotting , Bovinos , Linhagem Celular , Humanos , Imunoprecipitação , Família de Moléculas de Sinalização da Ativação Linfocitária , Transfecção
12.
Reproduction ; 152(3): 171-84, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27280409

RESUMO

Pregnancy-specific glycoproteins (PSGs) are members of the carcinoembryonic antigen cell adhesion molecule (CEACAM) family that are secreted by trophoblast cells. PSGs may modulate immune, angiogenic and platelet responses during pregnancy. Until now, PSGs are only found in species that have a highly invasive (hemochorial) placentation including humans, mice and rats. Surprisingly, analyzing the CEACAM gene family of the horse, which has a non-invasive epitheliochorial placenta, with the exception of the transient endometrial cups, we identified equine CEACAM family members that seem to be related to PSGs of rodents and primates. We identified seven genes that encode secreted PSG-like CEACAMs Phylogenetic analyses indicate that they evolved independently from an equine CEACAM1-like ancestor rather than from a common PSG-like ancestor with rodents and primates. Significantly, expression of PSG-like genes (CEACAM44, CEACAM48, CEACAM49 and CEACAM55) was found in non-invasive as well as invasive trophoblast cells such as purified chorionic girdle cells and endometrial cup cells. Chorionic girdle cells are highly invasive trophoblast cells that invade the endometrium of the mare where they form endometrial cups and are in close contact with maternal immune cells. Therefore, the microenvironment of invasive equine trophoblast cells has striking similarities to the microenvironment of trophoblast cells in hemochorial placentas, suggesting that equine PSG-like CEACAMs and rodent and primate PSGs have undergone convergent evolution. This is supported by our finding that equine PSG-like CEACAM49 exhibits similar activity to certain rodent and human PSGs in a functional assay of platelet-fibrinogen binding. Our results have implications for understanding the evolution of PSGs and their functions in maternal-fetal interactions.


Assuntos
Evolução Biológica , Antígeno Carcinoembrionário/metabolismo , Glicoproteínas/metabolismo , Placenta/metabolismo , Proteínas da Gravidez/metabolismo , Trofoblastos/metabolismo , Animais , Feminino , Glicoproteínas/classificação , Cavalos , Humanos , Filogenia , Gravidez
13.
J Biol Chem ; 287(26): 21584-98, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22544735

RESUMO

The vertebrate-restricted carcinoembryonic antigen gene family evolves extremely rapidly. Among their widely expressed members, the mammal-specific, secreted CEACAM16 is exceptionally well conserved and specifically expressed in the inner ear. To elucidate a potential auditory function, we inactivated murine Ceacam16 by homologous recombination. In young Ceacam16(-/-) mice the hearing threshold for frequencies below 10 kHz and above 22 kHz was raised. This hearing impairment progressed with age. A similar phenotype is observed in hearing-impaired members of Family 1070 with non-syndromic autosomal dominant hearing loss (DFNA4) who carry a missense mutation in CEACAM16. CEACAM16 was found in interdental and Deiters cells and was deposited in the tectorial membrane of the cochlea between postnatal days 12 and 15, when hearing starts in mice. In cochlear sections of Ceacam16(-/-) mice tectorial membranes were significantly more often stretched out as compared with wild-type mice where they were mostly contracted and detached from the outer hair cells. Homotypic cell sorting observed after ectopic cell surface expression of the carboxyl-terminal immunoglobulin variable-like N2 domain of CEACAM16 indicated that CEACAM16 can interact in trans. Furthermore, Western blot analyses of CEACAM16 under reducing and non-reducing conditions demonstrated oligomerization via unpaired cysteines. Taken together, CEACAM16 can probably form higher order structures with other tectorial membrane proteins such as α-tectorin and ß-tectorin and influences the physical properties of the tectorial membrane. Evolution of CEACAM16 might have been an important step for the specialization of the mammalian cochlea, allowing hearing over an extended frequency range.


Assuntos
Moléculas de Adesão Celular/biossíntese , Moléculas de Adesão Celular/genética , Perda Auditiva/genética , Perda Auditiva/metabolismo , Animais , Cóclea/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Feminino , Proteínas Ligadas por GPI/metabolismo , Células Ciliadas Auditivas/metabolismo , Audição , Humanos , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Mutação , Cadeias Pesadas de Miosina/genética , Miosina Tipo II/genética , Recombinação Genética , Membrana Tectorial/metabolismo
14.
J Microbiol Methods ; 211: 106765, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37302755

RESUMO

Bacterial pathogen-host interactions are a complex process starting with adherence and colonization followed by a variety of interactions such as invasion or cytotoxicity on one hand and pathogen recognition, secretion of proinflammatory/antibacterial substances and enhancing the barrier function of epithelial layers on the other hand. Therefore, a variety of in vitro, ex vivo and in vivo models have been established to investigate these interactions. Some in vitro models are composed of different cell types and extracellular matrices such as tissue explants or precision cut lung slices. These complex in vitro models mimic the in vivo situation more realistically, however, they often require new and more sophisticated methods for quantification of experimental results. Here we describe a multiplex qPCR-based method to quantify the number of bacteria of Mycoplasma (M.) mycoides interacting with their hosts in an absolute manner as well as normalized to the number of host cells. We choose the adenylate kinase (adk) gene from the pathogen and the Carcinoembryonic antigen-related cell adhesion molecule 18 (CEACAM18) gene from the host to determine cell numbers by a TaqMan-based assay system. Absolute copy numbers of the genes are calculated according to a standard containing a defined number of plasmids containing the sequence which is amplified by the qPCR. The new multiplex qPCR therefore allows the quantification of M. mycoides interacting with host cells in suspension, monolayer, 3D cell culture systems as well as in host tissues.


Assuntos
Doenças dos Bovinos , Mycoplasma mycoides , Mycoplasma , Animais , Bovinos , Mycoplasma mycoides/genética , Mycoplasma mycoides/metabolismo , Mycoplasma/genética , Pulmão/microbiologia , Técnicas de Cultura de Células , Doenças dos Bovinos/microbiologia
15.
Eur J Med Chem ; 245(Pt 1): 114923, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36423450

RESUMO

Prion diseases are characterized by the self-assembly of pathogenic misfolded scrapie isoforms (PrPSc) of the cellular prion protein (PrPC). In an effort to achieve a theranostic profile, symmetrical bifunctional carbazole derivatives were designed as fluorescent rigid analogues of GN8, a pharmacological chaperone that stabilizes the native PrPC conformation and prevents its pathogenic conversion. A focused library was synthesized via a four-step route, and a representative member was confirmed to have native fluorescence, including a band in the near-infrared region. After a cytotoxicity study, compounds were tested on the RML-infected ScGT1 neuronal cell line, by monitoring the levels of protease-resistant PrPSc. Small dialkylamino groups at the ends of the molecule were found to be optimal in terms of therapeutic index, and the bis-(dimethylaminoacetamido)carbazole derivative 2b was selected for further characterization. It showed activity in two cell lines infected with the mouse-adapted RML strain (ScGT1 and ScN2a). Unlike GN8, 2b did not affect PrPC levels, which represents a potential advantage in terms of toxicity. Amyloid Seeding Assay (ASA) experiments showed the capacity of 2b to delay the aggregation of recombinant mouse PrP. Its ability to interfere with the amplification of the scrapie RML strain by Protein Misfolding Cyclic Amplification (PMCA) was shown to be higher than that of GN8, although 2b did not inhibit the amplification of human vCJD prion. Fluorescent staining of PrPSc aggregates by 2b was confirmed in living cells. 2b emerges as an initial hit compound for further medicinal chemistry optimization towards strain-independent anti-prion compounds.


Assuntos
Carbazóis , Proteínas PrPC , Doenças Priônicas , Agregados Proteicos , Animais , Camundongos , Carbazóis/química , Carbazóis/farmacologia , Carbazóis/uso terapêutico , Linhagem Celular , Imagem Óptica , Doenças Priônicas/diagnóstico , Doenças Priônicas/tratamento farmacológico , Proteínas PrPC/antagonistas & inibidores , Proteínas PrPC/química , Agregados Proteicos/efeitos dos fármacos
16.
J Cell Sci ; 123(Pt 24): 4221-30, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21081647

RESUMO

Carcinoembryonic antigen cell adhesion molecule-1 (CEACAM1) is an immunoglobulin-like cell surface co-receptor expressed on epithelial, hematopoietic and endothelial cells. CEACAM1 functions as an adhesion molecule, mainly binding to itself or other members of the CEA family. We and others have previously shown that CEACAM1 is crucial for in vivo vascular integrity during ischemic neo-vascularization. Here, we have deciphered the roles of CEACAM1 in normal and pathological vascularization. We have found that Ceacam1-/- mice exhibit a significant increase in basal vascular permeability related to increased basal Akt and endothelial nitric oxide synthase (eNOS) activation in primary murine lung endothelial cells (MLECs). Moreover, CEACAM1 deletion in MLECs inhibits VEGF-mediated nitric oxide (NO) production, consistent with defective VEGF-dependent in vivo permeability in Ceacam1-/- mice. In addition, Ceacam1-null mice exhibit increased permeability of tumor vasculature. Finally, we demonstrate that CEACAM1 is tyrosine-phosphorylated upon VEGF treatment in a SHP-1- and Src-dependent manner, and that the key residues of the long cytoplasmic domain of CEACAM1 are crucial for CEACAM1 phosphorylation and NO production. This data represents the first report, to our knowledge, of a functional link between CEACAM1 and the VEGFR2/Akt/eNOS-mediated vascular permeability pathway.


Assuntos
Permeabilidade Capilar , Antígeno Carcinoembrionário/metabolismo , Motivos de Aminoácidos , Animais , Aorta/efeitos dos fármacos , Aorta/patologia , Aorta/ultraestrutura , Permeabilidade Capilar/efeitos dos fármacos , Antígeno Carcinoembrionário/química , Bovinos , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Ativação Enzimática/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Pulmão/citologia , Neoplasias Pulmonares/irrigação sanguínea , Neoplasias Pulmonares/patologia , Camundongos , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação/efeitos dos fármacos , Fosfotirosina/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Relação Estrutura-Atividade , Fator A de Crescimento do Endotélio Vascular/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Quinases da Família src/metabolismo
17.
J Immunol ; 185(4): 2580-8, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20644173

RESUMO

In stomach cancer, there is a need for new therapeutic strategies, in particular for the treatment of unresectable tumors and micrometastases. We investigated the efficacy of immunotherapy in an autochthonous model of gastric cancer, the CEA424-SV40 T Ag (TAg) transgenic mice. Treatment efficacy against both the autochthonous tumors and s.c. tumors induced by the derived cell line mGC3 were assessed. In wild-type mice, a dendritic cell vaccine loaded with irradiated tumor cells combined with CpG oligonucleotides induced efficient cytotoxic T cell and memory responses against mGC3 s.c. tumors. In contrast, neither s.c. nor autochthonous tumors responded to vaccination in CEA424-SV40 TAg mice, indicating tolerance to the SV40 TAg. To examine whether tumors in these mice were principally accessible to immunotherapy, splenocytes from immune wild-type mice were adoptively transferred into CEA424-SV40 TAg transgenic mice. Treated mice showed complete regression of the s.c. tumors associated with intratumoral infiltrates of CD8 and CD4 T cells. In contrast, the autochthonous gastric tumors in the same mice were poorly infiltrated and did not regress. Thus, even in the presence of an active anti-tumoral T cell response, autochthonous gastric tumors do not respond to immunotherapy. This is the first comparison of the efficacy of adoptive T cell transfer between transplanted s.c. tumors and autochthonous tumors in the same animals. Our results suggest that in gastric cancer patients, even a strong anti-tumor T cell response will not efficiently penetrate the tumor in the absence of additional therapeutic strategies targeting the tumor microenvironment.


Assuntos
Modelos Animais de Doenças , Imunoterapia Adotiva/métodos , Neoplasias Gástricas/terapia , Linfócitos T/transplante , Animais , Antígenos Transformantes de Poliomavirus/genética , Vacinas Anticâncer/efeitos adversos , Vacinas Anticâncer/imunologia , Antígeno Carcinoembrionário/genética , Linhagem Celular Tumoral , Terapia Combinada , Ilhas de CpG/genética , Células Dendríticas/imunologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oligonucleotídeos/administração & dosagem , Oligonucleotídeos/genética , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes de Fusão/genética , Baço/citologia , Baço/imunologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/imunologia , Análise de Sobrevida , Linfócitos T/imunologia , Vacinação
18.
Vaccines (Basel) ; 10(2)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35214632

RESUMO

New World arenaviruses are rodent-transmitted viruses and include a number of pathogens that are responsible for causing severe human disease. This includes Junín virus (JUNV), which is the causative agent of Argentine hemorrhagic fever. The wild nature and mobility of the rodent reservoir host makes it difficult to control the disease, and currently passive immunization with high-titer neutralizing antibody-containing plasma from convalescent patients is the only specific therapy. However, dwindling supplies of naturally available convalescent plasma, and challenges in developing similar resources for other closely related viruses, have made the development of alternative antibody-based therapeutic approaches of critical importance. In this study, we sought to induce a neutralizing antibody response in rabbits against the receptor-binding subunit of the viral glycoprotein, GP1, and the specific peptide sequences in GP1 involved in cellular receptor contacts. While these specific receptor-interacting peptides did not efficiently induce the production of neutralizing antibodies when delivered as a particulate antigen (as part of hepatitis B virus core-like particles), we showed that recombinant JUNV GP1 purified from transfected mammalian cells induced virus-neutralizing antibodies at high titers in rabbits. Further, neutralization was observed across a range of unrelated JUNV strains, a feature that is critical for effectiveness in the field. These results underscore the potential of GP1 alone to induce a potent neutralizing antibody response and highlight the importance of epitope presentation. In addition, effective virus neutralization by rabbit antibodies supports the potential applicability of this species for the future development of immunotherapeutics (e.g., based on humanized monoclonal antibodies). Such information can be applied in the design of vaccines and immunogens for both prevention and specific therapies against this and likely also other closely related pathogenic New World arenaviruses.

19.
J Transl Med ; 9: 140, 2011 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-21859450

RESUMO

BACKGROUND: Active-specific immunotherapy used as an adjuvant therapeutic strategy is rather unexplored for cancers with poorly characterized tumor antigens like gastric cancer. The aim of this study was to augment a therapeutic immune response to a low immunogenic tumor cell line derived from a spontaneous gastric tumor of a CEA424-SV40 large T antigen (CEA424-SV40 TAg) transgenic mouse. METHODS: Mice were treated with a lymphodepleting dose of cyclophosphamide prior to reconstitution with syngeneic spleen cells and vaccination with a whole tumor cell vaccine combined with GM-CSF (a treatment strategy abbreviated as LRAST). Anti-tumor activity to subcutaneous tumor challenge was examined in a prophylactic as well as a therapeutic setting and compared to corresponding controls. RESULTS: LRAST enhances tumor-specific T cell responses and efficiently inhibits growth of subsequent transplanted tumor cells. In addition, LRAST tended to slow down growth of established tumors. The improved anti-tumor immune response was accompanied by a transient decrease in the frequency and absolute number of CD4⁺CD25⁺FoxP3⁺ T cells (Tregs). CONCLUSIONS: Our data support the concept that whole tumor cell vaccination in a lymphodepleted and reconstituted host in combination with GM-CSF induces therapeutic tumor-specific T cells. However, the long-term efficacy of the treatment may be dampened by the recurrence of Tregs. Strategies to counteract suppressive immune mechanisms are required to further evaluate this therapeutic vaccination protocol.


Assuntos
Vacinas Anticâncer/imunologia , Imunidade/imunologia , Imunoterapia , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/terapia , Vacinação , Animais , Linhagem Celular Tumoral , Proliferação de Células , Terapia Combinada , Citotoxicidade Imunológica , Modelos Animais de Doenças , Adjuvante de Freund/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/uso terapêutico , Injeções Subcutâneas , Interferon gama/metabolismo , Linfonodos/imunologia , Linfonodos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Linfócitos T Reguladores/imunologia , Fatores de Tempo , Resultado do Tratamento
20.
BMC Biol ; 8: 12, 2010 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-20132533

RESUMO

BACKGROUND: Most rapidly evolving gene families are involved in immune responses and reproduction, two biological functions which have been assigned to the carcinoembryonic antigen (CEA) gene family. To gain insights into evolutionary forces shaping the CEA gene family we have analysed this gene family in 27 mammalian species including monotreme and marsupial lineages. RESULTS: Phylogenetic analysis provided convincing evidence that the primordial CEA gene family in mammals consisted of five genes, including the immune inhibitory receptor-encoding CEACAM1 (CEA-related cell adhesion molecule) ancestor. Our analysis of the substitution rates within the nucleotide sequence which codes for the ligand binding domain of CEACAM1 indicates that the selection for diversification is, perhaps, a consequence of the exploitation of CEACAM1 by a variety of viral and bacterial pathogens as their cellular receptor. Depending on the extent of the amplification of an ancestral CEACAM1, the number of CEACAM1-related genes varies considerably between mammalian species from less than five in lagomorphs to more than 100 in bats. In most analysed species, ITAM (immunoreceptor tyrosine-based activation motifs) or ITAM-like motif-containing proteins exist which contain Ig-V-like, ligand binding domains closely related to that of CEACAM1. Human CEACAM3 is one such protein which can function as a CEACAM1 decoy receptor in granulocytes by mediating the uptake and destruction of specific bacterial pathogens via its ITAM-like motif. The close relationship between CEACAM1 and its ITAM-encoding relatives appears to be maintained by gene conversion and reciprocal recombination. Surprisingly, secreted CEACAMs resembling immunomodulatory CEACAM1-related trophoblast-specific pregnancy-specific glycoproteins (PSGs) found in humans and rodents evolved only in a limited set of mammals. The appearance of PSG-like genes correlates with invasive trophoblast growth in these species. CONCLUSIONS: These phylogenetic studies provide evidence that pathogen/host coevolution and a possible participation in fetal-maternal conflict processes led to a highly species-specific diversity of mammalian CEA gene families.


Assuntos
Antígeno Carcinoembrionário/genética , Evolução Molecular , Sequência de Aminoácidos , Animais , Antígenos CD/química , Antígenos CD/classificação , Antígenos CD/genética , Antígeno Carcinoembrionário/química , Antígeno Carcinoembrionário/classificação , Bovinos , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/classificação , Moléculas de Adesão Celular/genética , Glicoproteínas/classificação , Glicoproteínas/genética , Humanos , Camundongos , Dados de Sequência Molecular , Filogenia , Ratos , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA