Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 142(3): 290-305, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37192286

RESUMO

Despite >80 years of clinical experience with coagulation factor VIII (FVIII) inhibitors, surprisingly little is known about the in vivo mechanism of this most serious complication of replacement therapy for hemophilia A. These neutralizing antidrug alloantibodies arise in ∼30% of patients. Inhibitor formation is T-cell dependent, but events leading up to helper T-cell activation have been elusive because of, in part, the complex anatomy and cellular makeup of the spleen. Here, we show that FVIII antigen presentation to CD4+ T cells critically depends on a select set of several anatomically distinct antigen-presenting cells, whereby marginal zone B cells and marginal zone and marginal metallophilic macrophages but not red pulp macrophages (RPMFs) participate in shuttling FVIII to the white pulp in which conventional dendritic cells (DCs) prime helper T cells, which then differentiate into follicular helper T (Tfh) cells. Toll-like receptor 9 stimulation accelerated Tfh cell responses and germinal center and inhibitor formation, whereas systemic administration of FVIII alone in hemophilia A mice increased frequencies of monocyte-derived and plasmacytoid DCs. Moreover, FVIII enhanced T-cell proliferation to another protein antigen (ovalbumin), and inflammatory signaling-deficient mice were less likely to develop inhibitors, indicating that FVIII may have intrinsic immunostimulatory properties. Ovalbumin, which, unlike FVIII, is absorbed into the RPMF compartment, fails to elicit T-cell proliferative and antibody responses when administered at the same dose as FVIII. Altogether, we propose that an antigen trafficking pattern that results in efficient in vivo delivery to DCs and inflammatory signaling, shape the immunogenicity of FVIII.


Assuntos
Linfócitos T CD4-Positivos , Fator VIII , Hemofilia A , Hemostáticos , Animais , Camundongos , Células Dendríticas/metabolismo , Fator VIII/imunologia , Fator VIII/uso terapêutico , Hemofilia A/tratamento farmacológico , Hemostáticos/imunologia , Hemostáticos/uso terapêutico , Ovalbumina/imunologia
2.
Am J Physiol Renal Physiol ; 321(6): F675-F688, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34658261

RESUMO

Expansion of renal lymphatic networks, or lymphangiogenesis (LA), is well recognized during development and is now being implicated in kidney diseases. Although LA is associated with multiple pathological conditions, very little is known about its role in acute kidney injury. The purpose of this study was to evaluate the role of LA in a model of cisplatin-induced nephrotoxicity. LA is predominately regulated by vascular endothelial growth factor (VEGF)-C and VEGF-D, ligands that exert their function through their cognate receptor VEGF receptor 3 (VEGFR3). We demonstrated that use of MAZ51, a selective VEGFR3 inhibitor, caused significantly worse structural and functional kidney damage in cisplatin nephrotoxicity. Apoptotic cell death and inflammation were also increased in MAZ51-treated animals compared with vehicle-treated animals following cisplatin administration. Notably, MAZ51 caused significant upregulation of intrarenal phospho-NF-κB, phospho-JNK, and IL-6. Cisplatin nephrotoxicity is associated with vascular congestion due to endothelial dysfunction. Using three-dimensional tissue cytometry, a novel approach to explore lymphatics in the kidney, we detected significant vascular autofluorescence attributed to erythrocytes in cisplatin alone-treated animals. Interestingly, no such congestion was detected in MAZ51-treated animals. We found increased renal vascular damage in MAZ51-treated animals, whereby MAZ51 caused a modest decrease in the endothelial markers endomucin and von Willebrand factor, with a modest increase in VEGFR2. Our findings identify a protective role for de novo LA in cisplatin nephrotoxicity and provide a rationale for the development of therapeutic approaches targeting LA. Our study also suggests off-target effects of MAZ51 on the vasculature in the setting of cisplatin nephrotoxicity.NEW & NOTEWORTHY Little is known about injury-associated LA in the kidney and its role in the pathophysiology of acute kidney injury (AKI). Observed exacerbation of cisplatin-induced AKI after LA inhibition was accompanied by increased medullary damage and cell death in the kidney. LA inhibition also upregulated compensatory expression of LA regulatory proteins, including JNK and NF-κB. These data support the premise that LA is induced during AKI and lymphatic expansion is a protective mechanism in cisplatin nephrotoxicity.


Assuntos
Indóis/toxicidade , Nefropatias/induzido quimicamente , Rim/efeitos dos fármacos , Linfangiogênese/efeitos dos fármacos , Vasos Linfáticos/efeitos dos fármacos , Naftalenos/toxicidade , Inibidores de Proteínas Quinases/toxicidade , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Cisplatino , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Rim/enzimologia , Rim/patologia , Rim/fisiopatologia , Nefropatias/enzimologia , Nefropatias/patologia , Nefropatias/fisiopatologia , Vasos Linfáticos/enzimologia , Vasos Linfáticos/patologia , Vasos Linfáticos/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fosforilação , Transdução de Sinais , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
3.
Lab Invest ; 101(9): 1186-1196, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34017058

RESUMO

The lymphatic system plays an integral role in physiology and has recently been identified as a key player in disease progression. Tissue injury stimulates lymphatic expansion, or lymphangiogenesis (LA), though its precise role in disease processes remains unclear. LA is associated with inflammation, which is a key component of acute kidney injury (AKI), for which there are no approved therapies. While LA research has gained traction in the last decade, there exists a significant lack of understanding of this process in the kidney. Though innovative studies have elucidated markers and models with which to study LA, the field is still evolving with ways to visualize lymphatics in vivo. Prospero-related homeobox-1 (Prox-1) is the master regulator of LA and determines lymphatic cell fate through its action on vascular endothelial growth factor receptor expression. Here, we investigate the consequences of AKI on the abundance and distribution of lymphatic endothelial cells using Prox1-tdTomato reporter mice (ProxTom) coupled with large-scale three-dimensional quantitative imaging and tissue cytometry (3DTC). Using these technologies, we describe the spatial dynamics of lymphatic vasculature in quiescence and post-AKI. We also describe the use of lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1) as a marker of lymphatic vessels using 3DTC in the absence of the ProxTom reporter mice as an alternative approach. The use of 3DTC for lymphatic research presents a new avenue with which to study the origin and distribution of renal lymphatic vessels. These findings will enhance our understanding of renal lymphatic function during injury and could inform the development of novel therapeutics for intervention in AKI.


Assuntos
Injúria Renal Aguda , Citometria por Imagem , Imageamento Tridimensional , Vasos Linfáticos , Injúria Renal Aguda/diagnóstico por imagem , Injúria Renal Aguda/metabolismo , Animais , Proteínas de Homeodomínio/metabolismo , Linfangiogênese , Vasos Linfáticos/diagnóstico por imagem , Vasos Linfáticos/metabolismo , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Supressoras de Tumor/metabolismo
4.
Lab Invest ; 101(5): 661-676, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33408350

RESUMO

The advent of personalized medicine has driven the development of novel approaches for obtaining detailed cellular and molecular information from clinical tissue samples. Tissue cytometry is a promising new technique that can be used to enumerate and characterize each cell in a tissue and, unlike flow cytometry and other single-cell techniques, does so in the context of the intact tissue, preserving spatial information that is frequently crucial to understanding a cell's physiology, function, and behavior. However, the wide-scale adoption of tissue cytometry as a research tool has been limited by the fact that published examples utilize specialized techniques that are beyond the capabilities of most laboratories. Here we describe a complete and accessible pipeline, including methods of sample preparation, microscopy, image analysis, and data analysis for large-scale three-dimensional tissue cytometry of human kidney tissues. In this workflow, multiphoton microscopy of unlabeled tissue is first conducted to collect autofluorescence and second-harmonic images. The tissue is then labeled with eight fluorescent probes, and imaged using spectral confocal microscopy. The raw 16-channel images are spectrally deconvolved into 8-channel images, and analyzed using the Volumetric Tissue Exploration and Analysis (VTEA) software developed by our group. We applied this workflow to analyze millimeter-scale tissue samples obtained from human nephrectomies and from renal biopsies from individuals diagnosed with diabetic nephropathy, generating a quantitative census of tens of thousands of cells in each. Such analyses can provide useful insights that can be linked to the biology or pathology of kidney disease. The approach utilizes common laboratory techniques, is compatible with most commercially-available confocal microscope systems and all image and data analysis is conducted using the VTEA image analysis software, which is available as a plug-in for ImageJ.


Assuntos
Técnicas Citológicas , Imageamento Tridimensional , Rim/citologia , Microscopia de Fluorescência por Excitação Multifotônica , Software , Corantes Fluorescentes , Humanos , Microscopia Confocal
5.
Am J Physiol Renal Physiol ; 313(2): F163-F173, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28404591

RESUMO

Hypertension is one of the most prevalent diseases worldwide and a major risk factor for renal failure and cardiovascular disease. The role of albuminuria, a common feature of hypertension and robust predictor of cardiorenal disorders, remains incompletely understood. The goal of this study was to investigate the mechanisms leading to albuminuria in the kidney of a rat model of hypertension, the Dahl salt-sensitive (SS) rat. To determine the relative contributions of the glomerulus and proximal tubule (PT) to albuminuria, we applied intravital two-photon-based imaging to investigate the complex renal physiological changes that occur during salt-induced hypertension. Following a high-salt diet, SS rats exhibited elevated blood pressure, increased glomerular sieving of albumin (GSCalb = 0.0686), relative permeability to albumin (+Δ16%), and impaired volume hemodynamics (-Δ14%). Serum albumin but not serum globulins or creatinine concentration was decreased (-0.54 g/dl), which was concomitant with increased filtration of albumin (3.7 vs. 0.8 g/day normal diet). Pathologically, hypertensive animals had significant tubular damage, as indicated by increased prevalence of granular casts, expansion and necrosis of PT epithelial cells (+Δ2.20 score/image), progressive augmentation of red blood cell velocity (+Δ269 µm/s) and micro vessel diameter (+Δ4.3 µm), and increased vascular injury (+Δ0.61 leakage/image). Therefore, development of salt-induced hypertension can be triggered by fast and progressive pathogenic remodeling of PT epithelia, which can be associated with changes in albumin handling. Collectively, these results indicate that both the glomerulus and the PT contribute to albuminuria, and dual treatment of glomerular filtration and albumin reabsorption may represent an effective treatment of salt-sensitive hypertension.


Assuntos
Albuminúria/etiologia , Pressão Sanguínea , Hipertensão/etiologia , Microscopia Intravital , Glomérulos Renais/patologia , Túbulos Renais Proximais/patologia , Microscopia de Fluorescência por Excitação Multifotônica , Albuminúria/sangue , Albuminúria/patologia , Albuminúria/fisiopatologia , Animais , Modelos Animais de Doenças , Taxa de Filtração Glomerular , Hipertensão/sangue , Hipertensão/patologia , Hipertensão/fisiopatologia , Glomérulos Renais/metabolismo , Glomérulos Renais/fisiopatologia , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/fisiopatologia , Ratos Endogâmicos Dahl , Reabsorção Renal , Albumina Sérica/metabolismo , Cloreto de Sódio na Dieta , Fatores de Tempo
6.
Blood ; 124(4): 519-29, 2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-24740813

RESUMO

We previously showed that immature CD166(+) osteoblasts (OB) promote hematopoietic stem cell (HSC) function. Here, we demonstrate that CD166 is a functional HSC marker that identifies both murine and human long-term repopulating cells. Both murine LSKCD48(-)CD166(+)CD150(+) and LSKCD48(-)CD166(+)CD150(+)CD9(+) cells, as well as human Lin(-)CD34(+)CD38(-)CD49f(+)CD166(+) cells sustained significantly higher levels of chimerism in primary and secondary recipients than CD166(-) cells. CD166(-/-) knockout (KO) LSK cells engrafted poorly in wild-type (WT) recipients and KO bone marrow cells failed to radioprotect lethally irradiated WT recipients. CD166(-/-) hosts supported short-term, but not long-term WT HSC engraftment, confirming that loss of CD166 is detrimental to the competence of the hematopoietic niche. CD166(-/-) mice were significantly more sensitive to hematopoietic stress. Marrow-homed transplanted WT hematopoietic cells lodged closer to the recipient endosteum than CD166(-/-) cells, suggesting that HSC-OB homophilic CD166 interactions are critical for HSC engraftment. STAT3 has 3 binding sites on the CD166 promoter and STAT3 inhibition reduced CD166 expression, suggesting that both CD166 and STAT3 may be functionally coupled and involved in HSC competence. These studies illustrate the significance of CD166 in the identification and engraftment of HSC and in HSC-niche interactions, and suggest that CD166 expression can be modulated to enhance HSC function.


Assuntos
Molécula de Adesão de Leucócito Ativado/fisiologia , Biomarcadores/metabolismo , Células da Medula Óssea/metabolismo , Células-Tronco Hematopoéticas/citologia , Nicho de Células-Tronco/fisiologia , Animais , Antígenos CD/metabolismo , Imunoprecipitação da Cromatina , Citometria de Fluxo , Células-Tronco Hematopoéticas/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Receptores de Superfície Celular/metabolismo , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária
7.
Am J Physiol Endocrinol Metab ; 306(2): E189-96, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24302003

RESUMO

In this study, we used lentiviral-delivered shRNA to generate a clonal line of 3T3-F442A preadipocytes with stable silencing of hepatocyte growth factor (HGF) expression and examined the long-term consequence of this modification on fat pad development. HGF mRNA expression was reduced 94%, and HGF secretion 79% (P < 0.01), compared with preadipocytes treated with nontargeting shRNA. Fat pads derived from HGF knockdown preadipocytes were significantly smaller (P < 0.01) than control pads beginning at 3 days postinjection (0.022 ± 0.003 vs. 0.037 ± 0.004 g), and further decreased in size at day 7 (0.015 ± 0.004 vs. 0.037 ± 0.003 g) and day 14 (0.008 ± 0.002 vs. 0.045 ± 0.007 g). Expression of the endothelial cell genes TIE1 and PECAM1 increased over time in control fat pads (1.6 ± 0.4 vs. 11.4 ± 1.7 relative units at day 3 and 14, respectively; P < 0.05) but not in HGF knockdown fat pads (1.1 ± 0.5 vs. 5.9 ± 2.2 relative units at day 3 and 14). Contiguous vascular structures were observed in control fat pads but were much less developed in HGF knockdown fat pads. Differentiation of preadipocytes to mature adipocytes was significantly attenuated in HGF knockdown fat pads. Fat pads derived from preadipocytes with knockdown of the HGF receptor c-MET were smaller than control pads at day 3 postinjection (0.034 ± 0.002 vs. 0.049 ± 0.004 g; P < 0.05), and remained the same size through day 14. c-MET knockdown fat pads developed a robust vasculature, and preadipocytes differentiated to mature adipocytes. Overall these data suggest that preadipocyte-secreted HGF is an important regulator of neovascularization in developing fat pads.


Assuntos
Tecido Adiposo/crescimento & desenvolvimento , Tecido Adiposo/metabolismo , Fator de Crescimento de Hepatócito/fisiologia , Neovascularização Fisiológica/genética , Adipócitos/efeitos dos fármacos , Adipócitos/fisiologia , Tecido Adiposo/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Fator de Crescimento de Hepatócito/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/genética , Interferência de RNA/fisiologia , RNA Interferente Pequeno/farmacologia
8.
Lymphat Res Biol ; 22(3): 195-202, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38699876

RESUMO

Background: Lymphedema is chronic limb swelling resulting from lymphatic dysfunction. It affects an estimated five million Americans. There is no cure for this disease. Assessing lymphatic growth is essential in developing novel therapeutics. Intravital microscopy (IVM) is a powerful imaging tool for investigating various biological processes in live animals. Tissue nanotransfection technology (TNT) facilitates a direct, transcutaneous nonviral vector gene delivery using a chip with nanochannel poration in a rapid (<100 ms) focused electric field. TNT was used in this study to deliver the genetic cargo in the murine tail lymphedema to assess the lymphangiogenesis. The purpose of this study is to experimentally evaluate the applicability of IVM to visualize and quantify lymphatics in the live mice model. Methods and Results: The murine tail model of lymphedema was utilized. TNT was applied to the murine tail (day 0) directly at the surgical site with genetic cargo loaded into the TNT reservoir: TNTpCMV6 group receives pCMV6 (expression vector backbone alone) (n = 6); TNTProx1 group receives pCMV6-Prox1 (n = 6). Lymphatic vessels (fluorescein isothiocyanate [FITC]-dextran stained) and lymphatic branch points (indicating lymphangiogenesis) were analyzed with the confocal/multiphoton microscope. The experimental group TNTProx1 exhibited reduced postsurgical tail lymphedema and increased lymphatic distribution compared to TNTpCMV6 group. More lymphatic branching points (>3-fold) were observed at the TNT site in TNTProx1 group. Conclusions: This study demonstrates a novel, powerful imaging tool for investigating lymphatic vessels in live murine tail model of lymphedema. IVM can be utilized for functional assessment of lymphatics and visualization of lymphangiogenesis following gene-based therapy.


Assuntos
Modelos Animais de Doenças , Microscopia Intravital , Linfangiogênese , Vasos Linfáticos , Linfedema , Cauda , Animais , Linfedema/patologia , Linfedema/diagnóstico por imagem , Linfedema/metabolismo , Linfedema/genética , Camundongos , Microscopia Intravital/métodos , Vasos Linfáticos/diagnóstico por imagem , Vasos Linfáticos/patologia , Vasos Linfáticos/metabolismo , Feminino , Técnicas de Transferência de Genes
9.
Front Endocrinol (Lausanne) ; 13: 989844, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568089

RESUMO

Type 2 diabetes mellitus (T2DM) causes peripheral vascular disease because of which several blood-borne factors, including vital nutrients fail to reach the affected tissue. Tissue epigenome is sensitive to chronic hyperglycemia and is known to cause pathogenesis of micro- and macrovascular complications. These vascular complications of T2DM may perpetuate the onset of organ dysfunction. The burden of diabetes is primarily because of a wide range of complications of which nonhealing diabetic ulcers represent a major component. Thus, it is imperative that current research help recognize more effective methods for the diagnosis and management of early vascular injuries. This review addresses the significance of epigenetic processes such as DNA methylation and histone modifications in the evolution of macrovascular and microvascular complications of T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Angiopatias Diabéticas , Doenças Vasculares , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/complicações , Epigênese Genética , Metilação de DNA , Doenças Vasculares/complicações
10.
Am J Physiol Cell Physiol ; 300(4): C723-42, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21209361

RESUMO

Fluorescence microscopy is one of the most powerful tools for elucidating the cellular functions of proteins and other molecules. In many cases, the function of a molecule can be inferred from its association with specific intracellular compartments or molecular complexes, which is typically determined by comparing the distribution of a fluorescently labeled version of the molecule with that of a second, complementarily labeled probe. Although arguably the most common application of fluorescence microscopy in biomedical research, studies evaluating the "colocalization" of two probes are seldom quantified, despite a diversity of image analysis tools that have been specifically developed for that purpose. Here we provide a guide to analyzing colocalization in cell biology studies, emphasizing practical application of quantitative tools that are now widely available in commercial and free image analysis software.


Assuntos
Biologia/métodos , Corantes Fluorescentes/metabolismo , Interpretação de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Imuno-Histoquímica/métodos , Software
11.
Biophys J ; 98(9): 1723-32, 2010 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-20441735

RESUMO

A combination of the extended multiscale model, new image processing algorithms, and biological experiments is used for studying the role of Factor VII (FVII) in venous thrombus formation. A detailed submodel of the tissue factor pathway of blood coagulation is introduced within the framework of the multiscale model to provide a detailed description of coagulation cascade. Surface reactions of the extrinsic coagulation pathway on membranes of platelets are studied under different flow conditions. It is shown that low levels of FVII in blood result in a significant delay in thrombin production, demonstrating that FVII plays an active role in promoting thrombus development at an early stage.


Assuntos
Coagulação Sanguínea , Modelos Biológicos , Trombose Venosa/sangue , Trombose Venosa/metabolismo , Animais , Fator VII/metabolismo , Camundongos , Porosidade , Proteína C/metabolismo , Trombina/biossíntese
12.
JCI Insight ; 5(9)2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32376804

RESUMO

Immune checkpoint blockade immunotherapy delivers promising clinical results in colorectal cancer (CRC). However, only a fraction of cancer patients develop durable responses. The tumor microenvironment (TME) negatively impacts tumor immunity and subsequently clinical outcomes. Therefore, there is a need to identify other checkpoint targets associated with the TME. Early-onset factors secreted by stromal cells as well as tumor cells often help recruit immune cells to the TME, among which are alarmins such as IL-33. The only known receptor for IL-33 is stimulation 2 (ST2). Here we demonstrated that high ST2 expression is associated with poor survival and is correlated with low CD8+ T cell cytotoxicity in CRC patients. ST2 is particularly expressed in tumor-associated macrophages (TAMs). In preclinical models of CRC, we demonstrated that ST2-expressing TAMs (ST2+ TAMs) were recruited into the tumor via CXCR3 expression and exacerbated the immunosuppressive TME; and that combination of ST2 depletion using ST2-KO mice with anti-programmed death 1 treatment resulted in profound growth inhibition of CRC. Finally, using the IL-33trap fusion protein, we suppressed CRC tumor growth and decreased tumor-infiltrating ST2+ TAMs. Together, our findings suggest that ST2 could serve as a potential checkpoint target for CRC immunotherapy.


Assuntos
Neoplasias Colorretais/imunologia , Proteína 1 Semelhante a Receptor de Interleucina-1/imunologia , Interleucina-33/imunologia , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia , Animais , Linhagem Celular Tumoral , Bases de Dados Genéticas , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Macrófagos Associados a Tumor/citologia
13.
Sci Rep ; 9(1): 8449, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186447

RESUMO

The pancreatic islet is a complex micro-organ containing numerous cell types, including endocrine, immune, and endothelial cells. The communication of these systems is lost upon isolation of the islets, and therefore the pathogenesis of diabetes can only be fully understood by studying this organized, multicellular environment in vivo. We have developed several adaptable tools to create a versatile platform to interrogate ß-cell function in vivo. Specifically, we developed ß-cell-selective virally-encoded fluorescent protein biosensors that can be rapidly and easily introduced into any mouse. We then coupled the use of these biosensors with intravital microscopy, a powerful tool that can be used to collect cellular and subcellular data from living tissues. Together, these approaches allowed the observation of in vivo ß-cell-specific ROS dynamics using the Grx1-roGFP2 biosensor and calcium signaling using the GcAMP6s biosensor. Next, we utilized abdominal imaging windows (AIW) to extend our in vivo observations beyond single-point terminal measurements to collect longitudinal physiological and biosensor data through repeated imaging of the same mice over time. This platform represents a significant advancement in our ability to study ß-cell structure and signaling in vivo, and its portability for use in virtually any mouse model will enable meaningful studies of ß-cell physiology in the endogenous islet niche.


Assuntos
Células Endoteliais/ultraestrutura , Células Secretoras de Insulina/ultraestrutura , Microscopia Intravital/métodos , Ilhotas Pancreáticas/ultraestrutura , Animais , Técnicas Biossensoriais , Sinalização do Cálcio/genética , Sinalização do Cálcio/imunologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Transplante das Ilhotas Pancreáticas , Camundongos
14.
J R Soc Interface ; 5(24): 705-22, 2008 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-17925274

RESUMO

A two-dimensional multiscale model is introduced for studying formation of a thrombus (clot) in a blood vessel. It involves components for modelling viscous, incompressible blood plasma; non-activated and activated platelets; blood cells; activating chemicals; fibrinogen; and vessel walls and their interactions. The macroscale dynamics of the blood flow is described by the continuum Navier-Stokes equations. The microscale interactions between the activated platelets, the platelets and fibrinogen and the platelets and vessel wall are described through an extended stochastic discrete cellular Potts model. The model is tested for robustness with respect to fluctuations of basic parameters. Simulation results demonstrate the development of an inhomogeneous internal structure of the thrombus, which is confirmed by the preliminary experimental data. We also make predictions about different stages in thrombus development, which can be tested experimentally and suggest specific experiments. Lastly, we demonstrate that the dependence of the thrombus size on the blood flow rate in simulations is close to the one observed experimentally.


Assuntos
Coagulação Sanguínea , Simulação por Computador , Modelos Cardiovasculares , Veias/fisiopatologia , Trombose Venosa/fisiopatologia , Animais , Velocidade do Fluxo Sanguíneo , Plaquetas/metabolismo , Plaquetas/patologia , Camundongos , Veias/metabolismo , Veias/patologia , Trombose Venosa/metabolismo , Trombose Venosa/patologia
15.
J Vis Exp ; (121)2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28362378

RESUMO

Increasing evidence indicates that normal hematopoiesis is regulated by distinct microenvironmental cues in the BM, which include specialized cellular niches modulating critical hematopoietic stem cell (HSC) functions1,2. Indeed, a more detailed picture of the hematopoietic microenvironment is now emerging, in which the endosteal and the endothelial niches form functional units for the regulation of normal HSC and their progeny3,4,5. New studies have revealed the importance of perivascular cells, adipocytes and neuronal cells in maintaining and regulating HSC function6,7,8. Furthermore, there is evidence that cells from different lineages, i.e. myeloid and lymphoid cells, home and reside in specific niches within the BM microenvironment. However, a complete mapping of the BM microenvironment and its occupants is still in progress. Transgenic mouse strains expressing lineage specific fluorescent markers or mice genetically engineered to lack selected molecules in specific cells of the BM niche are now available. Knock-out and lineage tracking models, in combination with transplantation approaches, provide the opportunity to refine the knowledge on the role of specific "niche" cells for defined hematopoietic populations, such as HSC, B-cells, T-cells, myeloid cells and erythroid cells. This strategy can be further potentiated by merging the use of two-photon microscopy of the calvarium. By providing in vivo high resolution imaging and 3-D rendering of the BM calvarium, we can now determine precisely the location where specific hematopoietic subsets home in the BM and evaluate the kinetics of their expansion over time. Here, Lys-GFP transgenic mice (marking myeloid cells)9 and RBPJ knock-out mice (lacking canonical Notch signaling)10 are used in combination with IVFM to determine the engraftment of myeloid cells to a Notch defective BM microenvironment.


Assuntos
Células da Medula Óssea/citologia , Células-Tronco Hematopoéticas/citologia , Microscopia Intravital/métodos , Microscopia de Fluorescência/métodos , Modelos Genéticos , Nicho de Células-Tronco , Animais , Células da Medula Óssea/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais
16.
J Clin Invest ; 127(12): 4527-4540, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29130940

RESUMO

Endothelial cells (ECs) are components of the hematopoietic microenvironment and regulate hematopoietic stem and progenitor cell (HSPC) homeostasis. Cytokine treatments that cause HSPC trafficking to peripheral blood are associated with an increase in dipeptidylpeptidase 4/CD26 (DPP4/CD26), an enzyme that truncates the neurotransmitter neuropeptide Y (NPY). Here, we show that enzymatically altered NPY signaling in ECs caused reduced VE-cadherin and CD31 expression along EC junctions, resulting in increased vascular permeability and HSPC egress. Moreover, selective NPY2 and NPY5 receptor antagonists restored vascular integrity and limited HSPC mobilization, demonstrating that the enzymatically controlled vascular gateway specifically opens by cleavage of NPY by CD26 signaling via NPY2 and NPY5 receptors. Mice lacking CD26 or NPY exhibited impaired HSPC trafficking that was restored by treatment with truncated NPY. Thus, our results point to ECs as gatekeepers of HSPC trafficking and identify a CD26-mediated NPY axis that has potential as a pharmacologic target to regulate hematopoietic trafficking in homeostatic and stress conditions.


Assuntos
Dipeptidil Peptidase 4/metabolismo , Células Endoteliais/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Neuropeptídeo Y/metabolismo , Transdução de Sinais/fisiologia , Animais , Dipeptidil Peptidase 4/genética , Células Endoteliais/citologia , Células-Tronco Hematopoéticas/citologia , Humanos , Camundongos , Camundongos Knockout , Neuropeptídeo Y/genética , Receptores de Neuropeptídeo Y/agonistas , Receptores de Neuropeptídeo Y/genética , Receptores de Neuropeptídeo Y/metabolismo
17.
J Neurosurg ; 127(6): 1219-1230, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28059653

RESUMO

OBJECTIVE Defects in the apoptotic machinery and augmented survival signals contribute to drug resistance in glioblastoma (GBM). Moreover, another complexity related to GBM treatment is the concept that GBM development and recurrence may arise from the expression of GBM stem cells (GSCs). Therefore, the use of a multifaceted approach or multitargeted agents that affect specific tumor cell characteristics will likely be necessary to successfully eradicate GBM. The objective of this study was to investigate the usefulness of sulforaphane (SFN)-a constituent of cruciferous vegetables with a multitargeted effect-as a therapeutic agent for GBM. METHODS The inhibitory effects of SFN on established cell lines, early primary cultures, CD133-positive GSCs, GSC-derived spheroids, and GBM xenografts were evaluated using various methods, including GSC isolation and the sphere-forming assay, analysis of reactive oxygen species (ROS) and apoptosis, cell growth inhibition assay, comet assays for assessing SFN-triggered DNA damage, confocal microscopy, Western blot analysis, and the determination of in vivo efficacy as assessed in human GBM xenograft models. RESULTS SFN triggered the significant inhibition of cell survival and induced apoptotic cell death, which was associated with caspase 3 and caspase 7 activation. Moreover, SFN triggered the formation of mitochondrial ROS, and SFN-triggered cell death was ROS dependent. Comet assays revealed that SFN increased single- and double-strand DNA breaks in GBM. Compared with the vehicle control cells, a significantly higher amount of γ-H2AX foci correlated with an increase in DNA double-strand breaks in the SFN-treated samples. Furthermore, SFN robustly inhibited the growth of GBM cell-induced cell death in established cell cultures and early-passage primary cultures and, most importantly, was effective in eliminating GSCs, which play a major role in drug resistance and disease recurrence. In vivo studies revealed that SFN administration at 100 mg/kg for 5-day cycles repeated for 3 weeks significantly decreased the growth of ectopic xenografts that were established from the early passage of primary cultures of GBM10. CONCLUSIONS These results suggest that SFN is a potent anti-GBM agent that targets several apoptosis and cell survival pathways and further preclinical and clinical studies may prove that SFN alone or in combination with other therapies may be potentially useful for GBM therapy.


Assuntos
Anticarcinógenos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Glioblastoma/metabolismo , Isotiocianatos/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Glioblastoma/patologia , Humanos , Camundongos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Sulfóxidos
18.
J Endod ; 42(10): 1490-5, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27663615

RESUMO

INTRODUCTION: Root canal disinfection and the establishment of an intracanal microenvironment conducive to the proliferation/differentiation of stem cells play a significant role in regenerative endodontics. This study was designed to (1) investigate the antimicrobial efficacy of triple antibiotic-containing nanofibers against a dual-species biofilm and (2) evaluate the ability of dental pulp stem cells (DPSCs) to adhere to and proliferate on dentin upon nanofiber exposure. METHODS: Seven-day-old dual-species biofilm established on dentin specimens was exposed for 3 days to the following: saline (control), antibiotic-free nanofibers (control), and triple antibiotic-containing nanofibers or a saturated triple antibiotic paste (TAP) solution (50 mg/mL in phosphate buffer solution). Bacterial viability was assessed using the LIVE/DEAD assay (Molecular Probes, Inc, Eugene, OR) and confocal laser scanning microscopy. For cytocompatibility studies, dentin specimens after nanofiber or TAP (1 g/mL in phosphate buffer solution) exposure were evaluated for cell adhesion and spreading by actin-phalloidin staining. DPSC proliferation was assessed on days 1, 3, and 7. Statistics were performed, and significance was set at the 5% level. RESULTS: Confocal laser scanning microscopy showed significant bacterial death upon antibiotic-containing nanofiber exposure, differing significantly (P < .05) from antibiotic-free fibers and the control (saline). DPSCs showed enhanced adhesion/spreading on dentin specimens treated with antibiotic-containing nanofibers when compared with its TAP counterparts. The DPSC proliferation rate was similar on days 1 and 3 in antibiotic-free nanofibers, triple antibiotic-containing nanofibers, and TAP-treated dentin. Proliferation was higher (9-fold) on dentin treated with antibiotic-containing nanofibers on day 7 compared with TAP. CONCLUSIONS: Triple antibiotic-containing polymer nanofibers led to significant bacterial death, whereas they did not affect DPSC attachment and proliferation on dentin.


Assuntos
Antibacterianos/administração & dosagem , Biofilmes/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Nanofibras/administração & dosagem , Polímeros/administração & dosagem , Antibacterianos/química , Bactérias/citologia , Bactérias/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Polpa Dentária/citologia , Polpa Dentária/efeitos dos fármacos , Polpa Dentária/microbiologia , Dentina/microbiologia , Desinfecção/métodos , Humanos , Nanofibras/química , Tratamento do Canal Radicular/métodos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/microbiologia
19.
Mol Cancer Ther ; 15(5): 794-805, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26873728

RESUMO

Constitutively activated STAT3 protein has been found to be a key regulator of pancreatic cancer and a target for molecular therapeutic intervention. In this study, PG-S3-001, a small molecule derived from the SH-4-54 class of STAT3 inhibitors, was found to inhibit patient-derived pancreatic cancer cell proliferation in vitro and in vivo in the low micromolar range. PG-S3-001 binds the STAT3 protein potently, Kd = 324 nmol/L by surface plasmon resonance, and showed no effect in a kinome screen (>100 cancer-relevant kinases). In vitro studies demonstrated potent cell killing as well as inhibition of STAT3 activation in pancreatic cancer cells. To better model the tumor and its microenvironment, we utilized three-dimensional (3D) cultures of patient-derived pancreatic cancer cells in the absence and presence of cancer-associated fibroblasts (CAF). In this coculture model, inhibition of tumor growth is maintained following STAT3 inhibition in the presence of CAFs. Confocal microscopy was used to verify tumor cell death following treatment of 3D cocultures with PG-S3-001. The 3D model was predictive of in vivo efficacy as significant tumor growth inhibition was observed upon administration of PG-S3-001. These studies showed that the inhibition of STAT3 was able to impact the survival of tumor cells in a relevant 3D model, as well as in a xenograft model using patient-derived cells. Mol Cancer Ther; 15(5); 794-805. ©2016 AACR.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Fator de Transcrição STAT3/antagonistas & inibidores , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Humanos , Ligantes , Masculino , Modelos Moleculares , Conformação Molecular , Neoplasias Pancreáticas/tratamento farmacológico , Fosforilação , Ligação Proteica , Fator de Transcrição STAT3/química , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto , Domínios de Homologia de src
20.
Biotechniques ; 55(4): 198-203, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24107251

RESUMO

Clinical approaches for tumor treatment often rely on combination therapy where a DNA damaging agent is used in combination with a DNA repair protein inhibitor. For this reason, great efforts have been made during the last decade to identify inhibitors of DNA repair proteins or, alternatively, small molecules that specifically alter protein stability or trafficking. Unfortunately, when studying these drug candidates, classical biochemical approaches are prone to artifacts. The apurinic/apyrimidinic endonuclease (APE1) protein is an essential component of the base excision repair (BER) pathway that is responsible for repairing DNA damage caused by oxidative and alkylating agents. In this work, we combined conditional gene expression knockdown of APE1 protein by RNA interference (RNAi) technology with re-expression of an ectopic recombinant form of APE1 fused with the photoconvertible fluorescent protein (PCFP) Dendra2. Dendra2 did not alter the subcellular localization or endonuclease activity of APE1. We calculated APE1 half-life and compared these results with the classical biochemical approach, which is based on cycloheximide (CHX) treatment. In conclusion, we combined RNAi and in vivo confocal microscopy to study a DNA repair protein demonstrating the feasibility and the advantage of this approach for the study of the cellular dynamic of a DNA repair protein.


Assuntos
Reparo do DNA/efeitos dos fármacos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Proteínas Luminescentes/genética , Microscopia Confocal , Neoplasias/terapia , Cicloeximida/administração & dosagem , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Neoplasias/genética , Neoplasias/patologia , Oxirredução/efeitos dos fármacos , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA