Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genes Dev ; 27(13): 1447-61, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23824538

RESUMO

Macroautophagy (autophagy hereafter) degrades and recycles proteins and organelles to support metabolism and survival in starvation. Oncogenic Ras up-regulates autophagy, and Ras-transformed cell lines require autophagy for mitochondrial function, stress survival, and engrafted tumor growth. Here, the essential autophagy gene autophagy-related-7 (atg7) was deleted concurrently with K-ras(G12D) activation in mouse models for non-small-cell lung cancer (NSCLC). atg7-deficient tumors accumulated dysfunctional mitochondria and prematurely induced p53 and proliferative arrest, which reduced tumor burden that was partly relieved by p53 deletion. atg7 loss altered tumor fate from adenomas and carcinomas to oncocytomas-rare, predominantly benign tumors characterized by the accumulation of defective mitochondria. Surprisingly, lipid accumulation occurred in atg7-deficient tumors only when p53 was deleted. atg7- and p53-deficient tumor-derived cell lines (TDCLs) had compromised starvation survival and formed lipidic cysts instead of tumors, suggesting defective utilization of lipid stores. atg7 deficiency reduced fatty acid oxidation (FAO) and increased sensitivity to FAO inhibition, indicating that with p53 loss, Ras-driven tumors require autophagy for mitochondrial function and lipid catabolism. Thus, autophagy is required for carcinoma fate, and autophagy defects may be a molecular basis for the occurrence of oncocytomas. Moreover, cancers require autophagy for distinct roles in metabolism that are oncogene- and tumor suppressor gene-specific.


Assuntos
Adenoma Oxífilo/fisiopatologia , Autofagia , Carcinoma Pulmonar de Células não Pequenas/fisiopatologia , Genes ras/fisiologia , Metabolismo dos Lipídeos , Neoplasias Pulmonares/fisiopatologia , Animais , Linhagem Celular Tumoral , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Genes p53/genética , Homeostase , Longevidade/genética , Camundongos , Mitocôndrias/patologia , Células Tumorais Cultivadas
2.
Nature ; 510(7504): 298-302, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24805240

RESUMO

ATP is the dominant energy source in animals for mechanical and electrical work (for example, muscle contraction or neuronal firing). For chemical work, there is an equally important role for NADPH, which powers redox defence and reductive biosynthesis. The most direct route to produce NADPH from glucose is the oxidative pentose phosphate pathway, with malic enzyme sometimes also important. Although the relative contribution of glycolysis and oxidative phosphorylation to ATP production has been extensively analysed, similar analysis of NADPH metabolism has been lacking. Here we demonstrate the ability to directly track, by liquid chromatography-mass spectrometry, the passage of deuterium from labelled substrates into NADPH, and combine this approach with carbon labelling and mathematical modelling to measure NADPH fluxes. In proliferating cells, the largest contributor to cytosolic NADPH is the oxidative pentose phosphate pathway. Surprisingly, a nearly comparable contribution comes from serine-driven one-carbon metabolism, in which oxidation of methylene tetrahydrofolate to 10-formyl-tetrahydrofolate is coupled to reduction of NADP(+) to NADPH. Moreover, tracing of mitochondrial one-carbon metabolism revealed complete oxidation of 10-formyl-tetrahydrofolate to make NADPH. As folate metabolism has not previously been considered an NADPH producer, confirmation of its functional significance was undertaken through knockdown of methylenetetrahydrofolate dehydrogenase (MTHFD) genes. Depletion of either the cytosolic or mitochondrial MTHFD isozyme resulted in decreased cellular NADPH/NADP(+) and reduced/oxidized glutathione ratios (GSH/GSSG) and increased cell sensitivity to oxidative stress. Thus, although the importance of folate metabolism for proliferating cells has been long recognized and attributed to its function of producing one-carbon units for nucleic acid synthesis, another crucial function of this pathway is generating reducing power.


Assuntos
Ácido Fólico/metabolismo , NADP/biossíntese , Animais , Carbono/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Citosol/enzimologia , Citosol/metabolismo , Glutationa/metabolismo , Glicina/metabolismo , Células HEK293 , Humanos , Isoenzimas/deficiência , Isoenzimas/genética , Isoenzimas/metabolismo , Leucovorina/análogos & derivados , Leucovorina/metabolismo , Metilenotetra-Hidrofolato Desidrogenase (NADP)/deficiência , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Camundongos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , NADP/metabolismo , Oxirredução , Estresse Oxidativo , Via de Pentose Fosfato , Serina/metabolismo , Tetra-Hidrofolatos/metabolismo
3.
J Cell Sci ; 130(20): 3455-3466, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28871044

RESUMO

Melanoma cells steer out of tumours using self-generated lysophosphatidic acid (LPA) gradients. The cells break down LPA, which is present at high levels around the tumours, creating a dynamic gradient that is low in the tumour and high outside. They then migrate up this gradient, creating a complex and evolving outward chemotactic stimulus. Here, we introduce a new assay for self-generated chemotaxis, and show that raising LPA levels causes a delay in migration rather than loss of chemotactic efficiency. Knockdown of the lipid phosphatase LPP3 - but not of its homologues LPP1 or LPP2 - diminishes the cell's ability to break down LPA. This is specific for chemotactically active LPAs, such as the 18:1 and 20:4 species. Inhibition of autotaxin-mediated LPA production does not diminish outward chemotaxis, but loss of LPP3-mediated LPA breakdown blocks it. Similarly, in both 2D and 3D invasion assays, knockdown of LPP3 diminishes the ability of melanoma cells to invade. Our results demonstrate that LPP3 is the key enzyme in the breakdown of LPA by melanoma cells, and confirm the importance of attractant breakdown in LPA-mediated cell steering.This article has an associated First Person interview with the first author of the paper.


Assuntos
Lisofosfolipídeos/metabolismo , Melanoma/metabolismo , Fosfatidato Fosfatase/fisiologia , Neoplasias Cutâneas/metabolismo , Linhagem Celular Tumoral , Quimiotaxia , Humanos , Melanoma/patologia , Invasividade Neoplásica , Neoplasias Cutâneas/patologia
4.
Nature ; 497(7451): 633-7, 2013 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-23665962

RESUMO

Macropinocytosis is a highly conserved endocytic process by which extracellular fluid and its contents are internalized into cells through large, heterogeneous vesicles known as macropinosomes. Oncogenic Ras proteins have been shown to stimulate macropinocytosis but the functional contribution of this uptake mechanism to the transformed phenotype remains unknown. Here we show that Ras-transformed cells use macropinocytosis to transport extracellular protein into the cell. The internalized protein undergoes proteolytic degradation, yielding amino acids including glutamine that can enter central carbon metabolism. Accordingly, the dependence of Ras-transformed cells on free extracellular glutamine for growth can be suppressed by the macropinocytic uptake of protein. Consistent with macropinocytosis representing an important route of nutrient uptake in tumours, its pharmacological inhibition compromises the growth of Ras-transformed pancreatic tumour xenografts. These results identify macropinocytosis as a mechanism by which cancer cells support their unique metabolic needs and point to the possible exploitation of this process in the design of anticancer therapies.


Assuntos
Aminoácidos/metabolismo , Transformação Celular Neoplásica , Proteína Oncogênica p21(ras)/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Pinocitose , Animais , Transporte Biológico , Carbono/metabolismo , Linhagem Celular Transformada , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Modelos Animais de Doenças , Feminino , Glutamina/metabolismo , Camundongos , Camundongos Nus , Células NIH 3T3 , Proteína Oncogênica p21(ras)/genética , Neoplasias Pancreáticas/genética , Proteólise
5.
Genes Dev ; 25(5): 460-70, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21317241

RESUMO

Autophagy is a catabolic pathway used by cells to support metabolism in response to starvation and to clear damaged proteins and organelles in response to stress. We report here that expression of a H-ras(V12) or K-ras(V12) oncogene up-regulates basal autophagy, which is required for tumor cell survival in starvation and in tumorigenesis. In Ras-expressing cells, defective autophagosome formation or cargo delivery causes accumulation of abnormal mitochondria and reduced oxygen consumption. Autophagy defects also lead to tricarboxylic acid (TCA) cycle metabolite and energy depletion in starvation. As mitochondria sustain viability of Ras-expressing cells in starvation, autophagy is required to maintain the pool of functional mitochondria necessary to support growth of Ras-driven tumors. Human cancer cell lines bearing activating mutations in Ras commonly have high levels of basal autophagy, and, in a subset of these, down-regulating the expression of essential autophagy proteins impaired cell growth. As cancers with Ras mutations have a poor prognosis, this "autophagy addiction" suggests that targeting autophagy and mitochondrial metabolism are valuable new approaches to treat these aggressive cancers.


Assuntos
Autofagia/fisiologia , Metabolismo Energético , Regulação Neoplásica da Expressão Gênica , Genes ras/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/genética , Células HCT116 , Humanos , Camundongos , Mitocôndrias/metabolismo , Oxirredução , Inanição
6.
J Cell Sci ; 129(18): 3367-73, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27635066

RESUMO

A defining hallmark of cancer is uncontrolled cell proliferation. This is initiated once cells have accumulated alterations in signaling pathways that control metabolism and proliferation, wherein the metabolic alterations provide the energetic and anabolic demands of enhanced cell proliferation. How these metabolic requirements are satisfied depends, in part, on the tumor microenvironment, which determines the availability of nutrients and oxygen. In this Cell Science at a Glance paper and the accompanying poster, we summarize our current understanding of cancer metabolism, emphasizing pathways of nutrient utilization and metabolism that either appear or have been proven essential for cancer cells. We also review how this knowledge has contributed to the development of anticancer therapies that target cancer metabolism.


Assuntos
Neoplasias/metabolismo , Animais , Ácidos Graxos/biossíntese , Humanos , Redes e Vias Metabólicas , Metaboloma , Metilação , Espécies Reativas de Oxigênio/metabolismo
7.
Nature ; 536(7617): 401-2, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27509862

Assuntos
Neoplasias , Humanos
8.
Br J Cancer ; 115(6): 635-40, 2016 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-27537393

RESUMO

Cancer is fundamentally a disease of uncontrolled cell proliferation. Tumour metabolism has emerged as an exciting new discipline studying how cancer cells obtain the necessary energy and cellular 'building blocks' to sustain growth. Glucose and glutamine have long been regarded as the key nutrients fuelling tumour growth. However, the inhospitable tumour microenvironment of certain cancers, like pancreatic cancer, causes the supply of these nutrients to be chronically insufficient for the demands of proliferating cancer cells. Recent work has shown that cancer cells are able to overcome this nutrient insufficiency by scavenging alternative substrates, particularly proteins and lipids. Here, we review recent work identifying the endocytic process of macropinocytosis and subsequent lysosomal processing as an important substrate-acquisition route. In addition, we discuss the impact of hypoxia on fatty acid metabolism and the relevance of exogenous lipids for supporting tumour growth as well as the routes by which tumour cells can access these lipids. Together, these cancer-specific scavenging pathways provide a promising opportunity for therapeutic intervention.


Assuntos
Neoplasias/metabolismo , Animais , Autofagia , Divisão Celular , Hipóxia Celular , Metabolismo Energético , Ácidos Graxos/metabolismo , Humanos , Metabolismo dos Lipídeos , Substâncias Macromoleculares/metabolismo , Metabolômica , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/fisiologia , Neoplasias/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Fosfatidilinositol 3-Quinases/fisiologia , Pinocitose/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/fisiologia
9.
Proc Natl Acad Sci U S A ; 110(22): 8882-7, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23671091

RESUMO

Cancer cell growth requires fatty acids to replicate cellular membranes. The kinase Akt is known to up-regulate fatty acid synthesis and desaturation, which is carried out by the oxygen-consuming enzyme stearoyl-CoA desaturase (SCD)1. We used (13)C tracers and lipidomics to probe fatty acid metabolism, including desaturation, as a function of oncogene expression and oxygen availability. During hypoxia, flux from glucose to acetyl-CoA decreases, and the fractional contribution of glutamine to fatty acid synthesis increases. In addition, we find that hypoxic cells bypass de novo lipogenesis, and thus, both the need for acetyl-CoA and the oxygen-dependent SCD1-reaction, by scavenging serum fatty acids. The preferred substrates for scavenging are phospholipids with one fatty acid tail (lysophospholipids). Hypoxic reprogramming of de novo lipogenesis can be reproduced in normoxic cells by Ras activation. This renders Ras-driven cells, both in culture and in allografts, resistant to SCD1 inhibition. Thus, a mechanism by which oncogenic Ras confers metabolic robustness is through lipid scavenging.


Assuntos
Hipóxia Celular/fisiologia , Ácidos Graxos/metabolismo , Lipogênese/fisiologia , Neoplasias/fisiopatologia , Estearoil-CoA Dessaturase/metabolismo , Proteínas ras/metabolismo , Animais , Autofagia/fisiologia , Isótopos de Carbono/química , Linhagem Celular Tumoral , Proliferação de Células , Ácidos Graxos/sangue , Glucose/química , Glutamina/química , Humanos , Camundongos , Camundongos Knockout , Consumo de Oxigênio/fisiologia , Fosfolipídeos/metabolismo , Pinocitose/fisiologia , Estearoil-CoA Dessaturase/antagonistas & inibidores , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína X Associada a bcl-2/genética , Proteínas ras/genética
10.
J Biol Chem ; 288(43): 31363-9, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24030823

RESUMO

Acetyl-CoA is an important anabolic precursor for lipid biosynthesis. In the conventional view of mammalian metabolism, acetyl-CoA is primarily derived by the oxidation of glucose-derived pyruvate in mitochondria. Recent studies have employed isotope tracers to show that in cancer cells grown in hypoxia or with defective mitochondria, a major fraction of acetyl-CoA is produced via another route, reductive carboxylation of glutamine-derived α-ketoglutarate (catalyzed by reverse flux through isocitrate dehydrogenase, IDH). Here, we employ a quantitative flux model to show that in hypoxia and in cells with defective mitochondria, oxidative IDH flux persists and may exceed the reductive flux. Therefore, IDH flux may not be a net contributor to acetyl-CoA production, although we cannot rule out net reductive IDH flux in some compartments. Instead of producing large amounts of net acetyl-CoA reductively, the cells adapt by reducing their demand for acetyl-CoA by importing rather than synthesizing fatty acids. Thus, fatty acid labeling from glutamine in hypoxia can be explained by spreading of label without net reductive IDH flux.


Assuntos
Ácidos Graxos/metabolismo , Glutamina/metabolismo , Isocitrato Desidrogenase/metabolismo , Acetilcoenzima A/metabolismo , Hipóxia Celular , Linhagem Celular Tumoral , Ácidos Graxos/química , Glutamina/química , Humanos , Isocitrato Desidrogenase/química , Ácidos Cetoglutáricos/metabolismo , Oxirredução
11.
Mol Syst Biol ; 9: 712, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24301801

RESUMO

Mammalian cells can generate ATP via glycolysis or mitochondrial respiration. Oncogene activation and hypoxia promote glycolysis and lactate secretion. The significance of these metabolic changes to ATP production remains however ill defined. Here, we integrate LC-MS-based isotope tracer studies with oxygen uptake measurements in a quantitative redox-balanced metabolic flux model of mammalian cellular metabolism. We then apply this approach to assess the impact of Ras and Akt activation and hypoxia on energy metabolism. Both oncogene activation and hypoxia induce roughly a twofold increase in glycolytic flux. Ras activation and hypoxia also strongly decrease glucose oxidation. Oxidative phosphorylation, powered substantially by glutamine-driven TCA turning, however, persists and accounts for the majority of ATP production. Consistent with this, in all cases, pharmacological inhibition of oxidative phosphorylation markedly reduces energy charge, and glutamine but not glucose removal markedly lowers oxygen uptake. Thus, glutamine-driven oxidative phosphorylation is a major means of ATP production even in hypoxic cancer cells.


Assuntos
Trifosfato de Adenosina/metabolismo , Hipóxia Celular/fisiologia , Glutamina/metabolismo , Modelos Biológicos , Fosforilação Oxidativa , Trifosfato de Adenosina/análise , Animais , Linhagem Celular Transformada , Linhagem Celular Tumoral , Humanos , Redes e Vias Metabólicas , Camundongos , Neoplasias/metabolismo , Biologia de Sistemas
12.
Metabolites ; 14(5)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38786757

RESUMO

Mass spectrometry (MS)-based clinical metabolomics is very promising for the discovery of new biomarkers and diagnostics. However, poor data accuracy and reproducibility limit its true potential, especially when performing data analysis across multiple sample sets. While high-resolution mass spectrometry has gained considerable popularity for discovery metabolomics, triple quadrupole (QqQ) instruments offer several benefits for the measurement of known metabolites in clinical samples. These benefits include high sensitivity and a wide dynamic range. Here, we present the Olaris Global Panel (OGP), a HILIC LC-QqQ MS method for the comprehensive analysis of ~250 metabolites from all major metabolic pathways in clinical samples. For the development of this method, multiple HILIC columns and mobile phase conditions were compared, the robustness of the leading LC method assessed, and MS acquisition settings optimized for optimal data quality. Next, the effect of U-13C metabolite yeast extract spike-ins was assessed based on data accuracy and precision. The use of these U-13C-metabolites as internal standards improved the goodness of fit to a linear calibration curve from r2 < 0.75 for raw data to >0.90 for most metabolites across the entire clinical concentration range of urine samples. Median within-batch CVs for all metabolite ratios to internal standards were consistently lower than 7% and less than 10% across batches that were acquired over a six-month period. Finally, the robustness of the OGP method, and its ability to identify biomarkers, was confirmed using a large sample set.

13.
Nat Metab ; 4(6): 693-710, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35760868

RESUMO

Elevated production of collagen-rich extracellular matrix is a hallmark of cancer-associated fibroblasts (CAFs) and a central driver of cancer aggressiveness. Here we find that proline, a highly abundant amino acid in collagen proteins, is newly synthesized from glutamine in CAFs to make tumour collagen in breast cancer xenografts. PYCR1 is a key enzyme for proline synthesis and highly expressed in the stroma of breast cancer patients and in CAFs. Reducing PYCR1 levels in CAFs is sufficient to reduce tumour collagen production, tumour growth and metastatic spread in vivo and cancer cell proliferation in vitro. Both collagen and glutamine-derived proline synthesis in CAFs are epigenetically upregulated by increased pyruvate dehydrogenase-derived acetyl-CoA levels. PYCR1 is a cancer cell vulnerability and potential target for therapy; therefore, our work provides evidence that targeting PYCR1 may have the additional benefit of halting the production of a pro-tumorigenic extracellular matrix. Our work unveils new roles for CAF metabolism to support pro-tumorigenic collagen production.


Assuntos
Neoplasias da Mama , Fibroblastos Associados a Câncer , Pirrolina Carboxilato Redutases/metabolismo , Neoplasias da Mama/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Carcinogênese/metabolismo , Carcinogênese/patologia , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Feminino , Glutamina/metabolismo , Humanos , Prolina , delta-1-Pirrolina-5-Carboxilato Redutase
14.
EMBO Mol Med ; 14(3): e14764, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35014179

RESUMO

Despite the clinical benefit of androgen-deprivation therapy (ADT), the majority of patients with advanced prostate cancer (PCa) ultimately develop lethal castration-resistant prostate cancer (CRPC). In this study, we identified thioesterase superfamily member 6 (THEM6) as a marker of ADT resistance in PCa. THEM6 deletion reduces in vivo tumour growth and restores castration sensitivity in orthograft models of CRPC. Mechanistically, we show that the ER membrane-associated protein THEM6 regulates intracellular levels of ether lipids and is essential to trigger the induction of the ER stress response (UPR). Consequently, THEM6 loss in CRPC cells significantly alters ER function, reducing de novo sterol biosynthesis and preventing lipid-mediated activation of ATF4. Finally, we demonstrate that high THEM6 expression is associated with poor survival and correlates with high levels of UPR activation in PCa patients. Altogether, our results highlight THEM6 as a novel driver of therapy resistance in PCa as well as a promising target for the treatment of CRPC.


Assuntos
Antagonistas de Androgênios , Neoplasias de Próstata Resistentes à Castração , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Humanos , Metabolismo dos Lipídeos , Masculino , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia
15.
Anal Chem ; 83(23): 9114-22, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22004349

RESUMO

We present a liquid chromatography/mass spectrometry (LC/MS) method for long-chain and very-long-chain fatty acid analysis and its application to (13)C-tracer studies of fatty acid metabolism. Fatty acids containing 14 to 36 carbon atoms are separated by C(8) reversed-phase chromatography using a water-methanol gradient with tributylamine as ion pairing agent, ionized by electrospray and analyzed by a stand-alone orbitrap mass spectrometer. The median limit of detection is 5 ng/mL with a linear dynamic range of 100-fold. Ratios of unlabeled to (13)C-labeled species are quantitated precisely and accurately (average relative standard deviation 3.2% and deviation from expectation 2.3%). In samples consisting of fatty acids saponified from cultured mammalian cells, 45 species are quantified, with average intraday relative standard deviations for independent biological replicates of 11%. The method enables quantitation of molecular ion peaks for all labeled forms of each fatty acid. Different degrees of (13)C-labeling from glucose and glutamine correspond to fatty acid uptake from media, de novo synthesis, and elongation. To exemplify the utility of the method, we examined isogenic cell lines with and without activated Ras oncogene expression. Ras increases the abundance and alters the labeling patterns of saturated and monounsaturated very-long-chain fatty acids, with the observed pattern consistent with Ras leading to enhanced activity of ELOVL4 or an enzyme with similar catalytic activity. This LC/MS method and associated isotope tracer techniques should be broadly applicable to investigating fatty acid metabolism.


Assuntos
Cromatografia Líquida de Alta Pressão , Ácidos Graxos/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Animais , Isótopos de Carbono/química , Linhagem Celular , Cromatografia de Fase Reversa , Ácidos Graxos/análise , Glucose/farmacologia , Glutamina/farmacologia , Camundongos
16.
Cell Rep ; 30(8): 2729-2742.e4, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32101748

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) features a near-universal mutation in KRAS. Additionally, the tumor suppressor PTEN is lost in ∼10% of patients, and in mouse models, this dramatically accelerates tumor progression. While oncogenic KRAS and phosphatidylinositol 3-kinase (PI3K) cause divergent metabolic phenotypes individually, how they synergize to promote tumor metabolic alterations and dependencies remains unknown. We show that in KRAS-driven murine PDAC cells, loss of Pten strongly enhances both mTOR signaling and macropinocytosis. Protein scavenging alleviates sensitivity to mTOR inhibition by rescuing AKT phosphorylation at serine 473 and consequently cell proliferation. Combined inhibition of mTOR and lysosomal processing of internalized protein eliminates the macropinocytosis-mediated resistance. Our results indicate that mTORC2, rather than mTORC1, is an important regulator of protein scavenging and that protein-mediated resistance could explain the lack of effectiveness of mTOR inhibitors in certain genetic backgrounds. Concurrent inhibition of mTOR and protein scavenging might be a valuable therapeutic approach.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias Pancreáticas/patologia , Pinocitose , Serina-Treonina Quinases TOR/antagonistas & inibidores , Adenocarcinoma/patologia , Animais , Carcinoma Ductal Pancreático/patologia , Morte Celular , Linhagem Celular Tumoral , Proliferação de Células , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos , PTEN Fosfo-Hidrolase/metabolismo , Neoplasias Pancreáticas/metabolismo , Fosforilação , Fosfosserina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Regulação para Cima , Neoplasias Pancreáticas
17.
Cancer Res ; 80(2): 175-188, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31562248

RESUMO

Statins are widely prescribed inhibitors of the mevalonate pathway, acting to lower systemic cholesterol levels. The mevalonate pathway is critical for tumorigenesis and is frequently upregulated in cancer. Nonetheless, reported effects of statins on tumor progression are ambiguous, making it unclear whether statins, alone or in combination, can be used for chemotherapy. Here, using advanced mass spectrometry and isotope tracing, we showed that statins only modestly affected cancer cholesterol homeostasis. Instead, they significantly reduced synthesis and levels of another downstream product, the mitochondrial electron carrier coenzyme Q, both in cultured cancer cells and tumors. This compromised oxidative phosphorylation, causing severe oxidative stress. To compensate, cancer cells upregulated antioxidant metabolic pathways, including reductive carboxylation, proline synthesis, and cystine import. Targeting cystine import with an xCT transporter-lowering MEK inhibitor, in combination with statins, caused profound tumor cell death. Thus, statin-induced ROS production in cancer cells can be exploited in a combinatorial regimen. SIGNIFICANCE: Cancer cells induce specific metabolic pathways to alleviate the increased oxidative stress caused by statin treatment, and targeting one of these pathways synergizes with statins to produce a robust antitumor response.See related commentary by Cordes and Metallo, p. 151.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Neoplasias Pancreáticas , Humanos , Ácido Mevalônico , Estresse Oxidativo/efeitos dos fármacos , Ubiquinona
18.
Nat Commun ; 11(1): 2508, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32427840

RESUMO

Despite the clinical success of Androgen Receptor (AR)-targeted therapies, reactivation of AR signalling remains the main driver of castration-resistant prostate cancer (CRPC) progression. In this study, we perform a comprehensive unbiased characterisation of LNCaP cells chronically exposed to multiple AR inhibitors (ARI). Combined proteomics and metabolomics analyses implicate an acquired metabolic phenotype common in ARI-resistant cells and associated with perturbed glucose and lipid metabolism. To exploit this phenotype, we delineate a subset of proteins consistently associated with ARI resistance and highlight mitochondrial 2,4-dienoyl-CoA reductase (DECR1), an auxiliary enzyme of beta-oxidation, as a clinically relevant biomarker for CRPC. Mechanistically, DECR1 participates in redox homeostasis by controlling the balance between saturated and unsaturated phospholipids. DECR1 knockout induces ER stress and sensitises CRPC cells to ferroptosis. In vivo, DECR1 deletion impairs lipid metabolism and reduces CRPC tumour growth, emphasizing the importance of DECR1 in the development of treatment resistance.


Assuntos
Metabolismo dos Lipídeos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Neoplasias de Próstata Resistentes à Castração/enzimologia , Antagonistas de Receptores de Andrógenos/administração & dosagem , Progressão da Doença , Homeostase , Humanos , Masculino , Mitocôndrias/enzimologia , Mitocôndrias/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Fosfolipídeos/metabolismo , Próstata/enzimologia , Próstata/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
19.
Nat Cancer ; 1(10): 998-1009, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33479702

RESUMO

Metabolic reprogramming is a key hallmark of cancer, but less is known about metabolic plasticity of the same tumor at different sites. Here, we investigated the metabolic adaptation of leukemia in two different microenvironments, the bone marrow and the central nervous system (CNS). We identified a metabolic signature of fatty-acid synthesis in CNS leukemia, highlighting Stearoyl-CoA desaturase (SCD1) as a key player. In vivo SCD1 overexpression increases CNS disease, whilst genetic or pharmacological inhibition of SCD1 decreases CNS load. Overall, we demonstrated that leukemic cells dynamically rewire metabolic pathways to suit local conditions and that targeting these adaptations can be exploited therapeutically.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Estearoil-CoA Dessaturase , Sistema Nervoso Central/metabolismo , Humanos , Lipogênese , Estearoil-CoA Dessaturase/genética , Microambiente Tumoral
20.
Nat Metab ; 2(5): 432-446, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32694660

RESUMO

Chronic inflammation is linked to diverse disease processes, but the intrinsic mechanisms that determine cellular sensitivity to inflammation are incompletely understood. Here, we show the contribution of glucose metabolism to inflammation-induced changes in the survival of pancreatic islet ß-cells. Using metabolomic, biochemical and functional analyses, we investigate the protective versus non-protective effects of glucose in the presence of pro-inflammatory cytokines. When protective, glucose metabolism augments anaplerotic input into the TCA cycle via pyruvate carboxylase (PC) activity, leading to increased aspartate levels. This metabolic mechanism supports the argininosuccinate shunt, which fuels ureagenesis from arginine and conversely diminishes arginine utilization for production of nitric oxide (NO), a chief mediator of inflammatory cytotoxicity. Activation of the PC-urea cycle axis is sufficient to suppress NO synthesis and shield cells from death in the context of inflammation and other stress paradigms. Overall, these studies uncover a previously unappreciated link between glucose metabolism and arginine-utilizing pathways via PC-directed ureagenesis as a protective mechanism.


Assuntos
Arginina/metabolismo , Glucose/metabolismo , Glucose/farmacologia , Inflamação/prevenção & controle , Células Secretoras de Insulina/efeitos dos fármacos , Distúrbios Congênitos do Ciclo da Ureia/patologia , Ureia/metabolismo , Adolescente , Adulto , Idoso , Ácido Aspártico/metabolismo , Sobrevivência Celular , Ciclo do Ácido Cítrico/efeitos dos fármacos , Feminino , Humanos , Inflamação/patologia , Células Secretoras de Insulina/patologia , Masculino , Metabolômica , Pessoa de Meia-Idade , Óxido Nítrico/metabolismo , Piruvato Carboxilase/metabolismo , Distúrbios Congênitos do Ciclo da Ureia/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA