Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39297742

RESUMO

Solid-state quantum emitters (QEs) with arbitrary direction emission and well-defined polarization are critical for scalable single-photon sources and quantum information processing. However, the design strategy for on-chip generation of off-normal photon emission with high-purity polarization characteristics has so far remained elusive. Here, we introduce the anisotropic holography metasurfaces for efficiently manipulating the emission direction and polarization of QE. The proposed method offers a flexible way to realize phase matching in surface plasmon scattering with spatially varying filling factors and provides an efficient route for designing advanced QE-coupled metasurfaces. By nonradiatively coupling nanodiamonds with metasurfaces, we experimentally demonstrate on-chip generation of well-collimated single-photon emission propagating along off-normal directions (i.e., 20° and 30°) featuring a divergence angle lower than 2.5°. The experimental average degree of linear polarization attains up to >0.98, thereby revealing markedly high polarization purity. This study facilitates applications of QEs in the deployment of integrated quantum networks.

2.
J Chem Phys ; 154(4): 044303, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33514119

RESUMO

Germanium vacancy (GeV) centers in diamonds constitute a promising platform for single-photon sources to be used in quantum information technologies. Emission from these color centers can be enhanced by utilizing a cavity that is resonant at the peak emission wavelength. We investigate circular plasmonic Bragg cavities for enhancing the emission from single GeV centers in nanodiamonds (NDs) at the zero phonon line. Following simulations of the enhancement for different configuration parameters, the appropriately designed Bragg cavities together with out-coupling gratings composed of hydrogen silsesquioxane ridges are fabricated around the NDs containing nitrogen vacancy centers deposited on a silica-coated silver surface. We characterize the fabricated configurations and finely tune the cavity parameters to match the GeV emission. Finally, we fabricate the cavity containing a single GeV-ND and compare the total decay-rate before and after cavity fabrication, finding a decay-rate enhancement of ∼5.5 and thereby experimentally confirming the feasibility of emission enhancement with circular plasmonic cavities.

3.
ACS Photonics ; 11(4): 1584-1591, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38645997

RESUMO

On-chip manipulation of photon emission from quantum emitters (QEs) is crucial for quantum nanophotonics and advanced optical applications. At the same time, the general design strategy is still elusive, especially for fully exploring the degrees of freedom of multiple channels. Here, the vectorial scattering holography (VSH) approach developed recently for flexibly designing QE-coupled metasurfaces is extended to tempering the strength of QE emission into a particular channel. The VSH power is demonstrated by designing, fabricating, and optically characterizing on-chip QE sources emitted into six differently oriented propagation channels, each representing the entangled state of orthogonal circular polarizations with different topological charges and characterized with a specific relative strength. We postulate that the demonstration of tempered multichannel photon emission from QE-coupled metasurfaces significantly broadens the possibilities provided by the holographic metasurface platform, especially those relevant for high-dimensional quantum information processing.

4.
Adv Mater ; 36(4): e2304495, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37543837

RESUMO

Ultracompact chip-integrated single-photon sources of collimated beams with polarization-encoded states are crucial for integrated quantum technologies. However, most of currently available single-photon sources rely on external bulky optical components to shape the polarization and phase front of emitted photon beams. Efficient integration of quantum emitters with beam shaping and polarization encoding functionalities remains so far elusive. Here, ultracompact single-photon sources of linearly polarized vortex beams based on chip-integrated quantum emitter-coupled metasurfaces are presented, which are meticulously designed by fully exploiting the potential of nanobrick-arrayed metasurfaces. The authors first demonstrate on-chip single-photon generation of high-purity linearly polarized vortex beams with prescribed topological charges of 0, - 1, and +1. The multiplexing of single-photon emission channels with orthogonal linear polarizations carrying different topological charges are further realized and their entanglement is demonstarated. The work illustrates the potential and feasibility of ultracompact quantum emitter-coupled metasurfaces as a new quantum optics platform for realizing chip-integrated high-dimensional single-photon sources.

5.
ACS Nano ; 17(20): 20308-20314, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37791727

RESUMO

Multichannel quantum emission is in high demand for advanced quantum photonic applications such as quantum communications, quantum computing, and quantum cryptography. However, to date, the most common way for shaping photon emission from quantum emitters (QEs) is to utilize free-standing (external) bulky optical components. Here, we develop the multichannel holography approach for flexibly designing on-chip QE-coupled metasurfaces that make use of nonradiatively QE-excited surface plasmon polaritons for generating far-field quantum emission, which propagates in designed directions carrying specific spin and orbital angular momenta (SAM and OAM, respectively). We further design, fabricate, and characterize on-chip quantum light sources of multichannel quantum emission encoded with different SAMs and OAMs. The holography-based inverse design approach developed and demonstrated on-chip quantum light sources with multiple degrees of freedoms, thereby enabling a powerful platform for quantum nanophotonics, especially relevant for advanced quantum photonic applications, e.g., high-dimensional quantum information processing.

6.
Sci Adv ; 9(32): eadh0725, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37556533

RESUMO

Generation of single photons carrying spin and orbital angular momenta (SAM and OAM) opens enticing perspectives for exploiting multiple degrees of freedom for high-dimensional quantum systems. However, on-chip generation of single photons encoded with single-mode SAM-OAM states has been a major challenge. Here, by using carefully designed anisotropic nanodimers fabricated atop a substrate, supporting surface plasmon polariton (SPP) propagation, and accurately positioned around a quantum emitter (QE), we enable nonradiative QE-SPP coupling and the SPP outcoupling into free-space propagating radiation featuring the designed SAM and OAM. We demonstrate on-chip room-temperature generation of well-collimated (divergence < 7.5°) circularly polarized (chirality > 0.97) single-mode vortex beams with different topological charges (𝓁 = 0, 1, and 2) and high single-photon purity, g(2)(0) < 0.15. The developed approach can straightforwardly be extended to produce multiple, differently polarized, single-mode single-photon radiation channels and enable thereby realization of high-dimensional quantum sources for advanced quantum photonic technologies.

7.
Nat Commun ; 14(1): 6253, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803006

RESUMO

Channelling single-photon emission in multiple well-defined directions and simultaneously controlling its polarization characteristics is highly desirable for numerous quantum technology applications. We show that this can be achieved by using quantum emitters (QEs) nonradiatively coupled to surface plasmon polaritons (SPPs), which are scattered into outgoing free-propagating waves by appropriately designed metasurfaces. The QE-coupled metasurface design is based on the scattering holography approach with radially diverging SPPs as reference waves. Using holographic metasurfaces fabricated around nanodiamonds with single Ge vacancy centres, we experimentally demonstrate on-chip integrated efficient generation of two well-collimated single-photon beams propagating along different 15° off-normal directions with orthogonal linear polarizations.

8.
Sci Adv ; 8(2): eabk3075, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35020431

RESUMO

On-chip photon sources carrying orbital angular momentum (OAM) are in demand for high-capacity optical information processing in both classical and quantum regimes. However, currently exploited integrated OAM sources have been primarily limited to the classical regime. Here, we demonstrate a room-temperature on-chip integrated OAM source that emits well-collimated single photons, with a single-photon purity of g(2)(0) ≈ 0.22, carrying entangled spin and OAM states and forming two spatially separated entangled radiation channels with different polarization properties. The OAM-encoded single photons are generated by efficiently outcoupling diverging surface plasmon polaritons excited with a deterministically positioned quantum emitter via Archimedean spiral gratings. Our OAM single-photon source platform bridges the gap between conventional OAM manipulation and nonclassical light sources, enabling high-dimensional and large-scale photonic quantum systems for quantum information processing.

9.
Adv Mater ; 32(16): e1907832, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32115783

RESUMO

Single photons carrying spin angular momentum (SAM), i.e., circularly polarized single photons generated typically by subjecting a quantum emitter (QE) to a strong magnetic field at low temperatures, are at the core of chiral quantum optics enabling nonreciprocal single-photon configurations and deterministic spin-photon interfaces. Here, a conceptually new approach to the room-temperature generation of SAM-coded single photons (SSPs) is described, which entails QE nonradiative coupling to surface plasmons being transformed, by interacting with an optical metasurface, into a collimated stream of SSPs with the designed handedness. Design, fabrication, and characterization of SSP sources, consisting of dielectric circular nanoridges with azimuthally varying widths deterministically fabricated on a dielectric-protected silver film around a nanodiamond containing a nitrogen-vacancy center, are reported. With properly engineered phases of QE-originated fields scattered by nanoridges, the outcoupled photons are characterized by a well-defined SAM (with the chirality >0.8) and high directionality (collection efficiency up to 92%).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA