Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32848256

RESUMO

We present high-contrast H-band polarized intensity images of the transitional disk around the young solar-like star LkCa 15. By utilizing Subaru/HiCIAO for polarimetric differential imaging, the angular resolution and the inner working angle reach 0.07 and r = 0″.1, respectively. We obtained a clearly resolved gap (width ≲ 27 au) at ~48 au from the central star. This gap is consistent with images reported in previous studies. We also confirmed the existence of a bright inner disk with a misaligned position angle of 13° ±4° with respect to that of the outer disk, i.e., the inner disk is possibly warped. The large gap and the warped inner disk both point to the existence of a multiple planetary system with a mass of ≲ 1 M Jup.

2.
Orig Life Evol Biosph ; 40(3): 335-46, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20213160

RESUMO

We present a wide-field (approximately 6' x 6') and deep near-infrared (K(s) band: 2.14 mum) circular polarization image in the Orion nebula, where massive stars and many low-mass stars are forming. Our results reveal that a high circular polarization region is spatially extended (approximately 0.4 pc) around the massive star-forming region, the BN/KL nebula. However, other regions, including the linearly polarized Orion bar, show no significant circular polarization. Most of the low-mass young stars do not show detectable extended structure in either linear or circular polarization, in contrast to the BN/KL nebula. If our solar system formed in a massive star-forming region and was irradiated by net circularly polarized radiation, then enantiomeric excesses could have been induced, through asymmetric photochemistry, in the parent bodies of the meteorites and subsequently delivered to Earth. These could then have played a role in the development of biological homochirality on Earth.


Assuntos
Meio Ambiente Extraterreno , Luz , Sistema Solar , Radiação , Estereoisomerismo
3.
Astrophys J ; 825(2)2016 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32753766

RESUMO

A radial velocity (RV) survey for intermediate-mass giants has been operated for over a decade at Okayama Astrophysical Observatory (OAO). The OAO survey has revealed that some giants show long-term linear RV accelerations (RV trends), indicating the presence of outer companions. Direct imaging observations can help clarify what objects generate these RV trends. We present the results of high-contrast imaging observations of six intermediate-mass giants with long-term RV trends using the Subaru Telescope and HiCIAO camera. We detected co-moving companions to γ Hya B ( 0.61 - 0.14 + 0.12 M ⊙ ) , HD 5608 B (0.10 ± 0.01M ⊙), and HD 109272 B (0.28 ± 0.06M ⊙). For the remaining targets(ι Dra, 18 Del, and HD 14067) we exclude companions more massive than 30-60 M Jup at projected separations of 1''-7''. We examine whether these directly imaged companions or unidentified long-period companions can account for the RV trends observed around the six giants. We find that the Kozai mechanism can explain the high eccentricity of the inner planets ι Dra b, HD 5608 b, and HD 14067 b.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA