Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 683
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(17): e2216247120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37068253

RESUMO

In Parkinson's disease (PD), reduced dopamine levels in the basal ganglia have been associated with altered neuronal firing and motor dysfunction. It remains unclear whether the altered firing rate or pattern of basal ganglia neurons leads to parkinsonism-associated motor dysfunction. In the present study, we show that increased histaminergic innervation of the entopeduncular nucleus (EPN) in the mouse model of PD leads to activation of EPN parvalbumin (PV) neurons projecting to the thalamic motor nucleus via hyperpolarization-activated cyclic nucleotide-gated (HCN) channels coupled to postsynaptic H2R. Simultaneously, this effect is negatively regulated by presynaptic H3R activation in subthalamic nucleus (STN) glutamatergic neurons projecting to the EPN. Notably, the activation of both types of receptors ameliorates parkinsonism-associated motor dysfunction. Pharmacological activation of H2R or genetic upregulation of HCN2 in EPNPV neurons, which reduce neuronal burst firing, ameliorates parkinsonism-associated motor dysfunction independent of changes in the neuronal firing rate. In addition, optogenetic inhibition of EPNPV neurons and pharmacological activation or genetic upregulation of H3R in EPN-projecting STNGlu neurons ameliorate parkinsonism-associated motor dysfunction by reducing the firing rate rather than altering the firing pattern of EPNPV neurons. Thus, although a reduced firing rate and more regular firing pattern of EPNPV neurons correlate with amelioration in parkinsonism-associated motor dysfunction, the firing pattern appears to be more critical in this context. These results also confirm that targeting H2R and its downstream HCN2 channel in EPNPV neurons and H3R in EPN-projecting STNGlu neurons may represent potential therapeutic strategies for the clinical treatment of parkinsonism-associated motor dysfunction.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Núcleo Subtalâmico , Camundongos , Animais , Núcleo Entopeduncular , Tálamo , Transtornos Parkinsonianos/terapia , Receptores Histamínicos
2.
J Virol ; : e0142124, 2024 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-39480087

RESUMO

Major histocompatibility complex class I (MHC-I) plays crucial roles against viral infections not only by initiating CD8+ T cell immunity but also by modulating natural killer (NK) cell cytotoxicity. Understanding how viruses precisely regulate MHC-I to optimize their infection is important; however, the manipulation of MHC-I molecules by porcine epidemic diarrhea virus (PEDV) remains unclear. In this study, we demonstrate that PEDV infection promotes the transcription of NLRC5, a key transactivator of MHC-I, in several porcine cell lines and in vivo. Paradoxically, no increase in MHC-I expression is observed after PEDV infection both in vitro and in vivo. Mechanistic studies revealed that PEDV infection inhibits the translation of PEDV-elicited NLRC5 mRNA and the expression of downstream MHC-I proteins, without affecting the expression of physiological NLRC5 and MHC-I proteins. Through viral protein screening, we identified PEDV nonstructural protein 1 (nsp1) as the critical antagonist that inhibits NLRC5-mediated upregulation of MHC-I, and the nsp1's inhibitory effect on MHC-I requires the motif of 15 amino acids at its C-terminus. Notably, our results revealed that the cytotoxic ability of NK cells against PEDV-infected cells is similar to that against healthy cells. Collectively, our findings uncover an immune evasion mechanism by which PEDV-infected cells masquerade as healthy cells to evade NK and T cell immunity. This is achieved by targeting NLRC5, a key MHC-I transcriptional regulator, via nsp1.IMPORTANCEPorcine epidemic diarrhea virus (PEDV) is a highly contagious enteric coronavirus that inflicts substantial financial losses on the swine industry. Major histocompatibility complex class I (MHC-I) is a critical factor influencing both CD8+ T cell and natural killer (NK) cell immunity. However, how PEDV manipulates MHC-I expression to optimize its infection process remains largely unknown. In this study, we demonstrate that PEDV's nonstructural protein 1 (nsp1) inhibits virus-mediated induction of MHC-I expression by directly targeting NLRC5, a key MHC-I transactivator. Intriguingly, nsp1 does not reduce physiological NLRC5 and MHC-I expression. This selective inhibition of virus-elicited NLRC5 mRNA translation allows PEDV-infected cells to masquerade as healthy cells, thereby evading CD8+ T cell and NK cell cytotoxicity. Our findings provide unique insights into the mechanisms by which PEDV evades CD8+ T cell and NK cell immunity.

3.
Arch Biochem Biophys ; 756: 109997, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38621443

RESUMO

The preservation of the native conformation and functionality of membrane proteins has posed considerable challenges. While detergents and liposome reconstitution have been traditional approaches, nanodiscs (NDs) offer a promising solution by embedding membrane proteins in phospholipids encircled by an amphipathic helical protein MSP belt. Nevertheless, a drawback of commonly used NDs is their limited homogeneity and stability. In this study, we present a novel approach to construct covalent annular nanodiscs (cNDs) by leveraging microbial transglutaminase (MTGase) to catalyze isopeptide bond formation between the side chains of terminal amino acids, specifically Lysine (K) and Glutamine (Q). This methodology significantly enhances the homogeneity and stability of NDs. Characterization of cNDs and the assembly of membrane proteins within them validate the successful reconstitution of membrane proteins with improved homogeneity and stability. Our findings suggest that cNDs represent a more suitable tool for investigating interactions between membrane proteins and lipids, as well as for analyzing membrane protein structures.


Assuntos
Proteínas de Membrana , Nanoestruturas , Transglutaminases , Nanoestruturas/química , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Transglutaminases/química , Transglutaminases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo
4.
Diabet Med ; : e15436, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39279604

RESUMO

AIMS: O-Linked ß-N-acetylglucosamine (O-GlcNAc) modification, a unique post-translational modification of proteins, is elevated in diabetic nephropathy. This review aims to summarize the current knowledge on the mechanisms by which O-GlcNAcylation of proteins contributes to the pathogenesis and progression of diabetic nephropathy, as well as the therapeutic potential of targeting O-GlcNAc modification for its treatment. METHODS: Current evidence in the literature was reviewed and synthesized in a narrative review. RESULTS: Hyperglycemia increases glucose flux into the hexosamine biosynthesis pathway, which activates glucosamino-fructose aminotransferase expression and activity, leading to the production of O-GlcNAcylation substrate UDP-GlcNAc and an increase in protein O-GlcNAcylation in kidney cells. Protein O-GlcNAcylation regulates the function of kidney cells including mesangial cells, podocytes, and proximal tubular cells, and promotes renal interstitial fibrosis, resulting in kidney damage. Current treatments for diabetic nephropathy, such as sodium-glucose cotransporter 2 (SGLT-2) inhibitors and renin-angiotensin-aldosterone system (RAAS) inhibitors, delay disease progression, and suppress protein O-GlcNAcylation. CONCLUSIONS: Increased protein O-GlcNAcylation mediates renal cell damage and promotes renal interstitial fibrosis, leading to diabetic nephropathy. Although the full significance of inhibition of O-GlcNAcylation is not yet understood, it may represent a novel target for treating diabetic nephropathy.

5.
Inflamm Res ; 73(1): 19-33, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38135851

RESUMO

OBJECTIVE: Salmonella enterica serovar Typhimurium (S. Typhimurium) is a representative model organism for investigating host-pathogen interactions. It was reported that S. Typhimurium spvC gene alleviated intestinal inflammation to aggravate systemic infection, while the precise mechanisms remain unclear. In this study, the influence of spvC on the antibacterial defense of macrophage/neutrophil mediated by gasdermin D (GSDMD) was investigated. METHODS: Mouse macrophage-like cell lines J774A.1 and RAW264.7, neutrophil-like cells derived from HL-60 cells (human promyletic leukemia cell lines) were infected with S. Typhimurium wild type, spvC deletion and complemented strains. Cell death was evaluated by LDH release and Annexin V-FITC/PI staining. Macrophage pyroptosis and neutrophil NETosis were detected by western blotting, live cell imaging and ELISA. Flow cytometry was used to assess the impact of spvC on macrophage-neutrophil cooperation in macrophage (dTHP-1)-neutrophil (dHL-60) co-culture model pretreated with GSDMD inhibitor disulfiram. Wild-type and Gsdmd-/- C57BL/6J mice were utilized for in vivo assay. The degree of phagocytes infiltration and inflammation were analyzed by immunofluorescence and transmission electron microscopy. RESULTS: Here we find that spvC inhibits pyroptosis in macrophages via Caspase-1/Caspase-11 dependent canonical and non-canonical pathways, and restrains neutrophil extracellular traps extrusion in GSDMD-dependent manner. Moreover, spvC could ameliorate macrophages/neutrophils infiltration and cooperation in the inflammatory response mediated by GSDMD to combat Salmonella infection. CONCLUSIONS: Our findings highlight the antibacterial activity of GSDMD in phagocytes and reveal a novel pathogenic mechanism employed by spvC to counteract this host defense, which may shed new light on designing effective therapeutics to control S. Typhimurium infection.


Assuntos
Gasderminas , Neutrófilos , Animais , Camundongos , Humanos , Camundongos Endogâmicos C57BL , Salmonella , Macrófagos , Antibacterianos , Inflamação , Caspases
6.
Acta Pharmacol Sin ; 45(11): 2277-2289, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38886550

RESUMO

Urolithin A (UroA), a dietary phytochemical, is produced by gut bacteria from fruits rich in natural polyphenols ellagitannins (ETs). The efficiency of ETs metabolism to UroA in humans depends on gut microbiota. UroA has shown a variety of pharmacological activities. In this study we investigated the effects of UroA on atherosclerotic lesion development and stability. Apolipoprotein E-deficient (ApoE-/-) mice were fed a high-fat and high-cholesterol diet for 3 months to establish atherosclerosis model. Meanwhile the mice were administered UroA (50 mg·kg-1·d-1, i.g.). We showed that UroA administration significantly decreased diet-induced atherosclerotic lesions in brachiocephalic arteries, macrophage content in plaques, expression of endothelial adhesion molecules, intraplaque hemorrhage and size of necrotic core, while increased the expression of smooth muscle actin and the thickness of fibrous cap, implying features of plaque stabilization. The underlying mechanisms were elucidated using TNF-α-stimulated human endothelial cells. Pretreatment with UroA (10, 25, 50 µM) dose-dependently inhibited TNF-α-induced endothelial cell activation and monocyte adhesion. However, the anti-inflammatory effects of UroA in TNF-α-stimulated human umbilical vein endothelial cells (HUVECs) were independent of NF-κB p65 pathway. We conducted RNA-sequencing profiling analysis to identify the differential expression of genes (DEGs) associated with vascular function, inflammatory responses, cell adhesion and thrombosis in UroA-pretreated HUVECs. Human disease enrichment analysis revealed that the DEGs were significantly correlated with cardiovascular diseases. We demonstrated that UroA pretreatment mitigated endothelial inflammation by promoting NO production and decreasing YAP/TAZ protein expression and TEAD transcriptional activity in TNF-α-stimulated HUVECs. On the other hand, we found that UroA administration modulated the transcription and cleavage of lipogenic transcription factors SREBP1/2 in the liver to ameliorate cholesterol metabolism in ApoE-/- mice. This study provides an experimental basis for new dietary therapeutic option to prevent atherosclerosis.


Assuntos
Cumarínicos , Inflamação , Placa Aterosclerótica , Animais , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/patologia , Cumarínicos/farmacologia , Humanos , Camundongos , Masculino , Inflamação/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/metabolismo , Camundongos Endogâmicos C57BL , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/metabolismo , Camundongos Knockout para ApoE , Dieta Hiperlipídica , Fator de Necrose Tumoral alfa/metabolismo
7.
Curr Microbiol ; 81(3): 86, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38305917

RESUMO

Salmonella is responsible for the majority of food poisoning outbreaks around the world. Pathogenic Salmonella mostly carries a virulence plasmid that contains the Salmonella plasmid virulence gene (spv), a highly conserved sequence encoding effector proteins that can manipulate host cells. Intestinal epithelial cells are crucial components of the innate immune system, acting as the first barrier of defense against infection. When the barrier is breached, Salmonella encounters the underlying macrophages in lamina propria, triggering inflammation and engaging in combat with immune cells recruited by inflammatory factors. Host regulated cell death (RCD) provides a variety of means to fight against or favour Salmonella infection. However, Salmonella releases effector proteins to regulate RCD, evading host immune killing and neutralizing host antimicrobial effects. This review provides an overview of pathogen-host interactions in terms of (1) pathogenicity of Salmonella spv on intestinal epithelial cells and macrophages, (2) mechanisms of host RCD to limit or promote pathogenic Salmonella expansion, and (3) effects and mechanisms of Salmonella spv gene on host RCD.


Assuntos
Morte Celular Regulada , Salmonella , Virulência/genética , Salmonella/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Plasmídeos/genética
8.
J Enzyme Inhib Med Chem ; 39(1): 2318645, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38465731

RESUMO

A series of novel benzimidazole derivatives were designed and synthesised based on the structures of reported oral available ALK inhibitor and HDAC inhibitor, pracinostat. In enzymatic assays, compound 3b, containing a 2-acyliminobenzimidazole moiety and hydroxamic acid side chain, could inhibit both ALK and HDAC6 (IC50 = 16 nM and 1.03 µM, respectively). Compound 3b also inhibited various ALK mutants known to be involved in crizotinib resistance, including mutant L1196M (IC50, 4.9 nM). Moreover, 3b inhibited the proliferation of several cancer cell lines, including ALK-addicted H2228 cells. To evaluate its potential for treating cancers in vivo, 3b was used in a human A549 xenograft model with BALB/c nude mice. At 20 mg/kg, 3b inhibited tumour growth by 85% yet had a negligible effect on mean body weight. These results suggest a attracting route for the further research and optimisation of dual ALK/HDAC inhibitors.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Camundongos , Animais , Humanos , Quinase do Linfoma Anaplásico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Camundongos Nus , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Proliferação de Células , Inibidores de Proteínas Quinases/química , Antineoplásicos/química , Linhagem Celular Tumoral
9.
Anim Biotechnol ; : 2370810, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940516

RESUMO

As a protein structurally similar to insulin, relaxin3 (RLN3) plays a role in promoting arousal, suppressing depressive or anxious behaviors. Two studies revealed the increase of RLN3 expression during chicken follicle selection. In this study, by real-time quantitative PCR and luciferase assay, mRNA expression and single nucleotide polymorphisms (SNPs) of chicken RLN3 were investigated. The mRNA expression of chicken RLN3 was higher in the granulosa cell of hierarchal follicles (Post-GCs) than that of pre-hierarchal follicles (Pre-GCs). In Pre-GCs, the mRNA expression of chicken RLN3 was stimulated by FSH and progesterone; in Post-GCs, it was stimulated by higher concentration of estrogen and FSH, however, was inhibited by progesterone. Four SNPs including g.-655G > C, g-592G > A, g.-372T > A and g.-282G > C were identified in the critical promoter region from -1291 bp to -207 bp of chicken RLN3, among which g.-655G > C, and g-592G > A were associated with age at first laying and clutch size, respectively, in Zaozhuang Sunzhi chickens. At g.-655G > C and g-592G > A, allele C and allele A had higher transcriptional activity, respectively. These data suggest that RLN3 plays an important role in chicken follicle development and SNPs in its promoter region are potential DNA markers for improving egg production traits.

10.
Sensors (Basel) ; 24(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38203124

RESUMO

In the field of maneuvering target tracking, the combined observations of azimuth and Doppler may cause weak observation or non-observation in the application of traditional target-tracking algorithms. Additionally, traditional target tracking algorithms require pre-defined multiple mathematical models to accurately capture the complex motion states of targets, while model mismatch and unavoidable measurement noise lead to significant errors in target state prediction. To address those above challenges, in recent years, the target tracking algorithms based on neural networks, such as recurrent neural networks (RNNs), long short-term memory (LSTM) networks, and transformer architectures, have been widely used for their unique advantages to achieve accurate predictions. To better model the nonlinear relationship between the observation time series and the target state time series, as well as the contextual relationship among time series points, we present a deep learning algorithm called recursive downsample-convolve-interact neural network (RDCINN) based on convolutional neural network (CNN) that downsamples time series into subsequences and extracts multi-resolution features to enable the modeling of complex relationships between time series, which overcomes the shortcomings of traditional target tracking algorithms in using observation information inefficiently due to weak observation or non-observation. The experimental results show that our algorithm outperforms other existing algorithms in the scenario of strong maneuvering target tracking with the combined observations of azimuth and Doppler.

11.
Molecules ; 29(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38202827

RESUMO

Auricularia auricula polysaccharides used in Pinus koraiensis polyphenol encapsulation and delivery under weightlessness are rarely reported. In this study, an anionic polysaccharide fragment named AAP Iα with a molecular weight of 133.304 kDa was isolated and purified to construct a polyphenol encapsulation system. Nanoparticles named NPs-PP loaded with a rough surface for Pinus koraiensis polyphenol (PP) delivery were fabricated by AAP Iα and ε-poly-L-lysine (ε-PL). SEM and the DLS tracking method were used to observe continuous changes in AAP Iα, ε-PL and PP on the nanoparticles' rough surface assembly, as well as the dispersion and stability. Hydrophilic, monodisperse and highly negative charged nanoparticles can be formed at AAP Iα 0.8 mg/mL, ε-PL 20 µg/mL and PP 80 µg/mL. FT-IR was used to determine their electrostatic interactions. Release kinetic studies showed that nanoparticles had an ideal gastrointestinal delivery effect. NPs-PP loaded were assembled through electrostatic interactions between polyelectrolytes after hydrogen bonding formation in PP-AAP Iα and PP-ε-PL, respectively. Colon adhesion properties and PP delivery in vivo of nanoparticles showed that NPs-PP loaded had high adhesion efficiency to the colonic mucosa under simulated microgravity and could enhance PP bioavailability. These results suggest that AAP Iα can be used in PP encapsulation and delivery under microgravity in astronaut food additives.


Assuntos
Auricularia , Nanopartículas , Pinus , Ausência de Peso , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Lisina
12.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1206-1216, 2024 Mar.
Artigo em Zh | MEDLINE | ID: mdl-38621967

RESUMO

Soil microbiome is a key evaluation index of soil health. Previous studies have shown that organic fertilizer from traditional Chinese medicine(TCM)residues can improve the yield and quality of cultivated traditional Chinese medicinal materials. However, there are few reports on the effects of organic fertilizer from TCM residues on soil microbiome. Therefore, on the basis of evaluating the effects of organic fertilizer from TCM residues on the yield and quality of cultivated Salvia miltiorrhiza, the metagenomic sequencing technique was used to study the effects of organic fertilizer from TCM residues on rhizosphere microbiome community and function of cultivated S. miltiorrhiza. The results showed that:(1) the application of organic fertilizer from TCM residues promoted the growth of S. miltiorrhiza and the accumulation of active components, and the above-ground and underground dry weight and fresh weight of S. miltiorrhiza increased by 371.4%, 288.3%, 313.4%, and 151.9%. The increases of rosmarinic acid and salvianolic acid B were 887.0% and 183.0%.(2)The application of organic fertilizer from TCM residues significantly changed the rhizosphere bacterial and fungal community structures, and the microbial community composition was significantly different.(3)The relative abundance of soil-beneficial bacteria, such as Nitrosospira multiformis, Bacillus subtilis, Lysobacter enzymogenes, and Trichoderma was significantly increased by the application of organic fertilizer from TCM residues.(4)KEGG function prediction analysis showed that metabolism-related microorganisms were more easily enriched in the soil environment after organic fertilizer application. The abundance of functional genes related to nitrification and denitrification could also be increased after the application of organic fertilizer from TCM residues. The results of this study provide guidance for the future application of organic fertilizer from TCM residues in the cultivation of traditio-nal Chinese medicinal materials and enrich the content of green cultivation technology of traditional Chinese medicinal materials.


Assuntos
Micobioma , Salvia miltiorrhiza , Solo/química , Salvia miltiorrhiza/química , Fertilizantes , Medicina Tradicional Chinesa , Bactérias/genética , Microbiologia do Solo
13.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2478-2488, 2024 May.
Artigo em Zh | MEDLINE | ID: mdl-38812147

RESUMO

In order to analyze the similarities and differences of chemical compositions between the roots and stems and leaves of Isodon japonicus(IJ), this study utilized UPLC-Q-TOF-MS technology to systematically characterize its chemical compositions, analyzed and identified the structure of its main compounds, and established a method for simultaneous determination of its content by refe-rence substance. A total of 34 major compounds in IJ, including 14 reference compounds, were identified or predicted online. Moreover, an UPLC-UV content determination method was developed for 11 compounds [danshensu, caffeic acid, vicenin-2,(1S,2S)-globoidnan B, rutin,(+)-rabdosiin,(-)-rabdosiin,(1S,2S)-rabdosiin, shimobashiric acid C, rosmarinic acid, and pedalitin]. The method exhibited excellent separation, stability, and repeatability, with a wide linear range(0.10-520.00 µg·mL~(-1)) and high linearity(R~2>0.999). The average recovery rates ranged from 94.72% to 104.2%. The principal component analysis(PCA) demonstrated a clear difference between the roots and stems and leaves of IJ, indicating good separation by cluster. Furthermore, the orthogonal partial least squares discriminant analysis(OPLS-DA) model was employed, and six main differentially identified compounds were identified: rosmarinic acid, shimobashiric acid C, epinodosin, pedalitin, rutin, and(1S,2S)-rabdosiin. In summary, this study established a strategy and method for distinguishing different parts of IJ, providing a valuable tool for quality control of IJ and a basis for the ratio-nal utilization and sustainable development of IJ.


Assuntos
Quimiometria , Medicamentos de Ervas Chinesas , Isodon , Espectrometria de Massas , Folhas de Planta , Cromatografia Líquida de Alta Pressão/métodos , Isodon/química , Espectrometria de Massas/métodos , Quimiometria/métodos , Folhas de Planta/química , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise , Raízes de Plantas/química , Caules de Planta/química
14.
Angew Chem Int Ed Engl ; 63(11): e202318142, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38265124

RESUMO

Precisely introducing topological defects is an important strategy in nanographene crystal engineering because defects can tune π-electronic structures and control molecular assemblies. The synergistic control of the synthesis and assembly of nanographenes by embedding the topological defects to afford two-dimensional (2D) crystals on surfaces is still a great challenge. By in-situ embedding ladder bipyrazinylene (LBPy) into acene, the narrowest nanographene with zigzag edges, we have achieved the precise preparation of 2D nonbenzenoid heteroacene crystals on Au(111). Through intramolecular electrocyclization of o-diisocyanides and Au adatom-directed [2+2] cycloaddition, the nonbenzenoid heteroacene products are produced with high chemoselectivity, and lead to the molecular 2D assembly via LBPy-derived interlocking hydrogen bonds. Using bond-resolved scanning tunneling microscopy, we determined the atomic structures of the nonbenzenoid heteroacene product and diverse organometallic intermediates. The tunneling spectroscopy measurements revealed the electronic structure of the nonbenzenoid heteroacene, which is supported by density functional theory (DFT) calculations. The observed distinct organometallic intermediates during progression annealing combined with DFT calculations demonstrated that LBPy formation proceeds via electrocyclization of o-diisocyanides, trapping of heteroarynes by Au adatoms, and stepwise elimination of Au adatoms.

15.
Angew Chem Int Ed Engl ; 63(41): e202409713, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39031452

RESUMO

The introduction of precise pore defects into nanocarbon structures results in the emergence of distinct physicochemical characteristics. However, there is a lack of research on non-planar chiral nanographene involving precise pore defects. Herein, we have developed two analogues to the π-extended pentadecabenzo[9]helicene (EP9H) containing embedded pore defects. Each molecules, namely extended dodecabenzo[7]helicene (ED7H; 1) or extended nonabenzo[5]helicene (EN5H; 2), exhibits dual-state emission. Significantly, the value of |glum| of 1 is exceptionally high at 1.41×10-2 in solution and BCPL as 254 M-1 cm-1. In PMMA film, |glum| of 1 is 8.56×10-3, and in powder film, it is 5.00×10-3. This study demonstrates that nanocarbon molecules with pore defects exhibit dual-state emission properties while maintaining quite good chiral luminescence properties. It was distinguished from the aggregation-caused quenching (ACQ) effect corresponding to the nanocarbon without embedded defect. Incorporating pore defects into chiral nanocarbon molecules also simplifies the synthesis process and enhances the solubility of the resulting product. These findings suggest that the introduction of pore defects can be a viable approach to improve nanocarbon molecules.

16.
J Biol Chem ; 298(1): 101480, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890644

RESUMO

African swine fever (ASF) is a viral hemorrhagic disease that affects domestic pigs and wild boar and is caused by the African swine fever virus (ASFV). The ASFV virion contains a long double-stranded DNA genome, which encodes more than 150 proteins. However, the immune escape mechanism and pathogenesis of ASFV remain poorly understood. Here, we report that the pyroptosis execution protein gasdermin D (GSDMD) is a new binding partner of ASFV-encoded protein S273R (pS273R), which belongs to the SUMO-1 cysteine protease family. Further experiments demonstrated that ASFV pS273R-cleaved swine GSDMD in a manner dependent on its protease activity. ASFV pS273R specifically cleaved GSDMD at G107-A108 to produce a shorter N-terminal fragment of GSDMD consisting of residues 1 to 107 (GSDMD-N1-107). Interestingly, unlike the effect of GSDMD-N1-279 fragment produced by caspase-1-mediated cleavage, the assay of LDH release, cell viability, and virus replication showed that GSDMD-N1-107 did not trigger pyroptosis or inhibit ASFV replication. Our findings reveal a previously unrecognized mechanism involved in the inhibition of ASFV infection-induced pyroptosis, which highlights an important function of pS273R in inflammatory responses and ASFV replication.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Cisteína Proteases , Proteínas de Ligação a Fosfato , Proteínas Citotóxicas Formadoras de Poros , Proteínas Virais , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/enzimologia , Vírus da Febre Suína Africana/metabolismo , Animais , Cisteína Proteases/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Piroptose , Sus scrofa , Suínos , Proteínas Virais/metabolismo
17.
BMC Genomics ; 24(1): 109, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36915048

RESUMO

BACKGROUND: Follicle selection in chickens refers to the process of selecting one follicle from a group of small yellow follicles (SY, 6-8 mm in diameter) for development into 12-15 mm hierarchal follicles (usually F6 follicles), which is controlled by sex hormones including follicle-stimulating factor (FSH), estrogen and progesterone. Follicle selection is a critical process impacting egg production in chicken, therefore, is the focus of many studies. Phosphorylation is important for the proper function of proteins, thus, needs to be analyzed by proteomic level. RESULT: In this study, we compared the phosphoproteomes of SY and F6 follicles in laying hens and identified 2,386 phosphoproteins and 5,940 phosphosites, of which 4,235 sites of 1,963 phosphoproteins were quantified. From SY to F6 follicles, 190 phosphorylation sites of 149 proteins changed significantly, among which the phosphorylation level of lysine demethylase 1 A (LSD1) at the conserved 54th serine (LSD1Ser54p) was significantly upregulated in F6 follicles compared to SY follicles (p < 0.05); however, the expression of chicken LSD1 were not significantly different on both mRNA and protein levels. LSD1Ser54p is mainly located in the nucleus of both SY and F6 follicles, and was higher in F6 follicles than that of SY follicles revealed by both immunofluorescence and Western blotting. LSD1Ser54p level increased after treatment with 5 ng/mL and 10 ng/mL of FSH in the theca cells and the granulosa cells of pre-hierarchal follicles, and with 50 ng/mL in granulosa cells of hierarchal follicles. In the theca cells of hierarchal follicles, estrogen stimulated the level of LSD1Ser54p in a dosage-dependent manner, and in granulosa cells of pre-hierarchal follicles, 10 ng/mL of estrogen increased LSD1Ser54p expression. Treatment with 50 ng/mL of progesterone increased LSD1Ser54p expression in theca cells of pre-hierarchal follicles, and with 10 to 100 ng/ml enhanced LSD1Ser54p expression in the granulosa cells of hierarchal follicles. CONCLUSION: The expression dynamics of LSD1Ser54p in follicles from SY to F6 and its regulation by sex hormones suggest that it is involved in chicken follicle selection.


Assuntos
Galinhas , Lisina , Animais , Feminino , Galinhas/metabolismo , Lisina/metabolismo , Progesterona , Fosforilação , Proteômica , Folículo Ovariano/metabolismo , Células da Granulosa/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Hormônio Foliculoestimulante/farmacologia , Hormônio Foliculoestimulante/metabolismo , Estrogênios , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Histona Desmetilases/metabolismo
18.
J Am Chem Soc ; 145(24): 13048-13058, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37289993

RESUMO

Two-dimensional (2D) crystal-to-crystal transition is an important method in crystal engineering because of its ability to directly create diverse crystal materials from one crystal. However, steering a 2D single-layer crystal-to-crystal transition on surfaces with high chemo- and stereoselectivity under ultra-high vacuum conditions is a great challenge because the transition is a complex dynamic process. Here, we report a highly chemoselective 2D crystal transition from radialene to cumulene with retention of stereoselectivity on Ag(111) via retro-[2 + 1] cycloaddition of three-membered carbon rings and directly visualize the transition process involving a stepwise epitaxial growth mechanism by the combination of scanning tunneling microscopy and non-contact atomic force microscopy. Using progression annealing, we found that isocyanides on Ag(111) at a low annealing temperature underwent sequential [1 + 1 + 1] cycloaddition and enantioselective molecular recognition based on C-H···Cl hydrogen bonding interactions to form 2D triaza[3]radialene crystals. In contrast, a higher annealing temperature induced the transformation of triaza[3]radialenes to generate trans-diaza[3]cumulenes, which were further assembled into 2D cumulene-based crystals through twofold N-Ag-N coordination and C-H···Cl hydrogen bonding interactions. By combining the observed distinct transient intermediates and density functional theory calculations, we demonstrate that the retro-[2 + 1] cycloaddition reaction proceeds via the ring opening of a three-membered carbon ring, sequential dechlorination/hydrogen passivation, and deisocyanation. Our findings provide new insights into the growth mechanism and dynamics of 2D crystals and have implications for controllable crystal engineering.

19.
J Am Chem Soc ; 145(13): 7136-7146, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36951172

RESUMO

The emergence of quantum magnetism in nanographenes provides ample opportunities to fabricate purely organic devices for spintronics and quantum information. Although heteroatom doping is a viable way to engineer the electronic properties of nanographenes, the synthesis of doped nanographenes with collective quantum magnetism remains elusive. Here, a set of nitrogen-doped nanographenes (N-NGs) with atomic precision are fabricated on Au(111) through a combination of imidazole [2+2+2]-cyclotrimerization and cyclodehydrogenation reactions. High-resolution scanning probe microscopy measurements reveal the presence of collective quantum magnetism for nanographenes with three radicals, with spectroscopic features which cannot be captured by mean-field density functional theory calculations but can be well reproduced by Heisenberg spin model calculations. In addition, the mechanism of magnetic exchange interaction of N-NGs has been revealed and compared with their counterparts with pure hydrocarbons. Our findings demonstrate the bottom-up synthesis of atomically precise N-NGs which can be utilized to fabricate low-dimensional extended graphene nanostructures for realizing ordered quantum phases.

20.
PLoS Pathog ; 17(7): e1009733, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34310655

RESUMO

Inflammatory factors and type I interferons (IFNs) are key components of host antiviral innate immune responses, which can be released from the pathogen-infected macrophages. African swine fever virus (ASFV) has developed various strategies to evade host antiviral innate immune responses, including alteration of inflammatory responses and IFNs production. However, the molecular mechanism underlying inhibition of inflammatory responses and IFNs production by ASFV-encoded proteins has not been fully understood. Here we report that ASFV infection only induced low levels of IL-1ß and type I IFNs in porcine alveolar macrophages (PAMs), even in the presence of strong inducers such as LPS and poly(dA:dT). Through further exploration, we found that several members of the multigene family 360 (MGF360) and MGF505 strongly inhibited IL-1ß maturation and IFN-ß promoter activation. Among them, pMGF505-7R had the strongest inhibitory effect. To verify the function of pMGF505-7R in vivo, a recombinant ASFV with deletion of the MGF505-7R gene (ASFV-Δ7R) was constructed and assessed. As we expected, ASFV-Δ7R infection induced higher levels of IL-1ß and IFN-ß compared with its parental ASFV HLJ/18 strain. ASFV infection-induced IL-1ß production was then found to be dependent on TLRs/NF-κB signaling pathway and NLRP3 inflammasome. Furthermore, we demonstrated that pMGF505-7R interacted with IKKα in the IKK complex to inhibit NF-κB activation and bound to NLRP3 to inhibit inflammasome formation, leading to decreased IL-1ß production. Moreover, we found that pMGF505-7R interacted with and inhibited the nuclear translocation of IRF3 to block type I IFN production. Importantly, the virulence of ASFV-Δ7R is reduced in piglets compared with its parental ASFV HLJ/18 strain, which may due to induction of higher IL-1ß and type I IFN production in vivo. Our findings provide a new clue to understand the functions of ASFV-encoded pMGF505-7R and its role in viral infection-induced pathogenesis, which might help design antiviral agents or live attenuated vaccines to control ASF.


Assuntos
Vírus da Febre Suína Africana/patogenicidade , Febre Suína Africana/imunologia , Evasão da Resposta Imune/imunologia , Macrófagos Alveolares/imunologia , Proteínas Virais/imunologia , Vírus da Febre Suína Africana/imunologia , Animais , Imunidade Inata , Interferon Tipo I/biossíntese , Interleucina-1beta/biossíntese , Família Multigênica , Suínos , Virulência/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA