RESUMO
Embryonic genome activation (EGA) is a critical step during embryonic development. Several transcription factors have been identified that play major roles in initiating EGA; however, this gradual and complex mechanism still needs to be explored. In this study, we investigated the role of nuclear transcription factor Y subunit A (NFYA) in bovine EGA and bovine embryonic development and its relationship with the platelet-derived growth factor receptor-ß (PDGFRß) by using a potent selective activator (PDGF-BB) and inhibitor (CP-673451) of PDGF receptors. Activation and inhibition of PDGFRß using PDGF-BB and CP-673451 revealed that NFYA expression is significantly (p < 0.05) affected by the PDGFRß. In addition, PDGFRß mRNA expression was significantly increased (p < 0.05) in the activator group and significantly decreased (p < 0.05) in the inhibitor group when compared with PDGFRα. Downregulation of NFYA following PDGFRß inhibition was associated with the expression of critical EGA-related genes, bovine embryo development rate, and implantation potential. Moreover, ROS and mitochondrial apoptosis levels and expression of pluripotency-related markers necessary for inner cell mass development were also significantly (p < 0.05) affected by the downregulation of NFYA while interrupting trophoblast cell (CDX2) differentiation. In conclusion, the PDGFRß-NFYA axis is critical for bovine embryonic genome activation and embryonic development.
Assuntos
Receptor beta de Fator de Crescimento Derivado de Plaquetas , Transdução de Sinais , Animais , Bovinos , Becaplermina/metabolismo , Transdução de Sinais/fisiologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Diferenciação CelularRESUMO
Transforming growth factor-beta (TGF-ß) plays a critical role in regulating trophoblast invasion and proliferation. Growth differentiation factor-8 (GDF-8) is a member of the TGF-ß superfamily and is categorized as a myostatin subtype. It is primarily a secreted protein synthesized in skeletal muscle cells. It is expressed in the placenta, reproductive tissues, and cells. In this study, we investigated the role of GDF-8 in the development and hatching rate of bovine embryos. We noted a notable elevation (p < 0.05) in the development and hatching rates compared to the control embryos. Furthermore, the GDF-8 group showed a significantly improved total cell number (p < 0.05) and an increase in trophectoderm ratio inner cell mass (trophectoderm: inner cell mass) cells (p < 0.001) compared to the control group. Additionally, blastocysts treated with GDF-8 exhibited significantly higher mRNA levels of caudal-type homeobox 2 (CDX2) (p < 0.05). The trophoblast invasion area was significantly larger in the GDF-8 group than in the control group (p < 0.01). Furthermore, qRT-PCR analysis revealed significantly higher mRNA levels (p < 0.05) of matrix metalloproteinases 9 (MMP9) and follistatin-like 3(FSTL3), both of which are associated with the ALK5-SMAD2/3 signaling pathway, in the GDF-8 group than those in the control group. The mRNA expression levels of genes related to tight junctions (TJ) and adherent junctions were higher in the GDF-8 group than those in the control group (p < 0.05). After 24 h of thawing, blastocysts were analyzed using 4-kDa FITC-dextran, which revealed a higher TJ integrity in the GDF-8 group (p < 0.01). Thus, GDF-8 plays a crucial role in bovine embryonic development, in vitro implantation, and cryotolerance.
RESUMO
Although somatic cell nuclear transfer (SCNT) is a critical component of animal cloning, this approach has several issues. We previously introduced the cytoplasm injection cloning technology (CICT), which significantly improves the quality and quantity of cloned embryos. This study examined the residual status of fused cytoplasmic organelles, such as the endoplasmic reticulum (ER) and lysosomes, in the CICT group during early embryo development. We found that extra-cytoplasmic organelles stained using the ER-Tracker™ Green dye and LysoTracker™ Deep Red probe were fused and dispersed throughout the recipient oocyte and were still visible in day 8 blastocysts. We screened for ER stress, autophagy, and apoptosis-related genes to elucidate the association between the added organelles and improved embryo quality in CICT-cloned embryos. We found that CHOP, ATF4, ATG5, ATG7, and LC3 genes showed non-significantly up- or downregulated expression between CICT- and in vitro fertilization (IVF)-derived embryos but showed significantly (p < 0.05) upregulated expression in SCNT-cloned embryos. Surprisingly, a non-significant difference in the expression of some genes, such as ATF6 and caspase-3, was observed between the CICT- and SCNT-cloned embryos. Our findings imply that compared to conventional SCNT cloning, CICT-derived cloned embryos with additional cytoplasm have much higher organelle activity, lower autophagy, lower rates of apoptosis, and higher embryo development rates.
Assuntos
Clonagem de Organismos , Embrião de Mamíferos , Animais , Bovinos , Clonagem de Organismos/veterinária , Técnicas de Transferência Nuclear/veterinária , Blastocisto , Desenvolvimento Embrionário , Fertilização in vitro/veterinária , Retículo EndoplasmáticoRESUMO
Allergens from domestic cats (Felis catus) cause allergy-related health problems worldwide. Fel d 1 is a major allergen that causes severe allergic reactions in humans, including rhinitis, conjunctivitis, and life-threatening asthma. Therefore, patients with cat allergies anticipate hypoallergenic cats. We successfully generated Fel d 1 chain 2 (CH2) genome-edited cats using the CRISPR-Cas9 system in this study. T7 endonuclease 1 assay and Sanger sequencing were used to confirm the mutation in CH2 genome-edited cats. Fel d 1 level in CH2 genome-edited cats were assessed by enzyme-linked immunosorbent assay (ELISA). Remarkably, ELISA showed that the level of Fel d 1 in the CH2 homozygous genome-edited cat (Name: Alsik) was extremely low compared with that in wild type domestic cats and could be hypoallergenic cats. Additionally, we successfully cloned the CH2 homozygous genome-edited cat using cytoplasm injection clone technology. The cloned CH2 homozygous genome-edited cat was verified using microsatellite analysis. Creating hypoallergenic cats using the CRISPR-Cas9 system is a significant step forward because these cats can safely approach allergic patients.
Assuntos
Asma , Hipersensibilidade , Gatos , Animais , Humanos , Sistemas CRISPR-Cas , Hipersensibilidade/complicações , Alérgenos/análise , Asma/etiologia , Ensaio de Imunoadsorção EnzimáticaRESUMO
Melatonin, an antioxidant hormone secreted by the pineal gland, has been recognized as a regulator for numerous biological events. The deleterious effects of juglone, a polyphenolic extract of walnut trees, on embryo development has been previously reported. In the current study, we aimed to display the impact of melatonin administrated during in vitro oocyte maturation (IVM) on juglone-treated oocytes. Thus, in vitro matured oocytes were collected after 24 h post incubation with juglone in the presence or absence of melatonin. Reactive oxygen species (ROS), glutathione (GSH) content, mitochondrial distribution, and the relative abundance of mRNA transcription levels were assessed in oocytes, in addition, oocytes were in vitro fertilized to check the competency levels of oocytes to generate embryos. We found that administration of melatonin during the maturation of oocytes under juglone stress significantly improved the cleavage rate, 8-16 cell-stage embryos and day-8 blastocysts when compared to the sole juglone treatment. In addition, the fluorescence intensity of ROS increased, whereas the GSH decreased in juglone-treated oocytes compared to melatonin-juglone co-treated and untreated ones. Additionally, a significant increase in the mitochondrial aberrant pattern, the pattern that was normalized following melatonin supplementation, was observed following juglone administration. The mRNA analysis using RT-qPCR revealed a significant upregulation of autophagy and oxidative-stress-specific markers in the juglone-treated group compared to the co-treatment and control. In conclusion, the study reveals, for the first time, a protective effect of melatonin against the oxidative stress initiated following juglone treatment during the in vitro maturation of oocytes.