RESUMO
Bovine tuberculosis (bTB) is a zoonotic bacterial disease presenting public health, veterinary, and economic threats around the globe. Although cattle producers rely on regular testing and management practices to minimize domestic herd exposure, wildlife species around the world continue to be the main reservoirs for disease. Wildlife reservoirs for bTB include the Eurasian badger (Meles meles) in Great Britain and Ireland, the brushtail possum (Trichosurus vulpecula) in New Zealand, wild boar (Sus scrofa) in Spain, as well as white-tailed deer (Odocoileus virginianus) in the United States and red deer (Cervus elaphus) in Spain. Although all reservoir species share the ability to infect cattle, they differ in transmission capability, disease pathogenesis, diagnostic detection, and vaccination strategies. In this review, bTB interactions with these wildlife reservoirs are discussed, illustrating the need to address bTB disease in wildlife hosts to achieve eradication in domestic livestock.
Assuntos
Cervos , Mycobacterium bovis , Tuberculose Bovina , Bovinos , Animais , Animais Selvagens , Cervos/microbiologia , Reservatórios de Doenças/microbiologia , Reservatórios de Doenças/veterináriaRESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19) in humans, has a broad host range, and is able to infect domestic and wild animal species. Notably, white-tailed deer (WTD, Odocoileus virginianus), the most widely distributed cervid species in the Americas, were shown to be highly susceptible to SARS-CoV-2 in challenge studies and reported natural infection/exposure rates approaching 30-40% in free-ranging WTD in the U.S. Thus, understanding the infection and transmission dynamics of SARS-CoV-2 in WTD is critical to prevent future zoonotic transmission to humans, at the human-WTD interface during hunting or venison farming, and for implementation of effective disease control measures. Here, we demonstrated that following intranasal inoculation with SARS-CoV-2 B.1 lineage, WTD fawns (~8-month-old) shed infectious virus up to day 5 post-inoculation (pi), with high viral loads shed in nasal and oral secretions. This resulted in efficient deer-to-deer transmission on day 3 pi. Consistent a with lack of infectious SARS-CoV-2 shedding after day 5 pi, no transmission was observed to contact animals added on days 6 and 9 pi. We have also investigated the tropism and sites of SARS-CoV-2 replication in adult WTD (3-4 years of age). Infectious virus was detected up to day 6 pi in nasal secretions, and from various respiratory-, lymphoid-, and central nervous system tissues, indicating broad tissue tropism and multiple sites of virus replication. The study provides important insights on the infection and transmission dynamics of SARS-CoV-2 in WTD, a wild animal species that is highly susceptible to infection and with the potential to become a reservoir for the virus in the field.
Assuntos
COVID-19 , Cervos , Animais , COVID-19/veterinária , SARS-CoV-2 , TropismoRESUMO
Histophilus somni is an important pathogen of the bovine respiratory disease complex, yet the mechanisms underlying its virulence remain poorly understood. It is known that H. somni can incorporate sialic acid into lipooligosaccharide (LOS), and sialylated H. somni is more resistant to phagocytosis and complement-mediated killing by serum compared to non-sialylated bacteria in vitro. However, the virulence of non-sialylated H. somni has not been evaluated in vivo using an animal model. In this study, we investigated the contribution of sialic acid to virulence by constructing an H. somni sialic acid uptake mutant (ΔnanP-ΔnanU) and comparing the parent and mutant strains in a mouse septicemia and mortality model. Intraperitoneal challenge of mice with wildtype H. somni (1 × 108 colony forming units/mouse, CFU) was lethal to all animals. Mice challenged with three different doses (1, 2, or 5 × 108 CFU/mouse) of an H. somni ΔnanP-ΔnanU sialic acid uptake mutant exhibited survival rates of 90 %, 60 %, and 0 % respectively. High-performance anion exchange chromatography analyses revealed that LOS prepared from both parent and the ΔnanP-ΔnanU mutant strains of H. somni were sialylated. These findings suggest the presence of de novo sialic acid synthesis pathway, although the genes associated with de novo sialic acid synthesis (neuB and neuC) were not identified by genomic analysis. The lower attenuation in mice is most likely attributed to the sialylated LOS of H. somni nanPU mutant.
Assuntos
Modelos Animais de Doenças , Lipopolissacarídeos , Ácido N-Acetilneuramínico , Pasteurellaceae , Sepse , Animais , Camundongos , Ácido N-Acetilneuramínico/metabolismo , Pasteurellaceae/genética , Pasteurellaceae/patogenicidade , Pasteurellaceae/metabolismo , Virulência/genética , Sepse/microbiologia , Sepse/mortalidade , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/genética , Feminino , Mutação , Bovinos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismoRESUMO
Mycobacterium bovis is a serious zoonotic pathogen and the cause of tuberculosis in many mammalian species, most notably, cattle. The hallmark lesion of tuberculosis is the granuloma. It is within the developing granuloma where host and pathogen interact; therefore, it is critical to understand host-pathogen interactions at the granuloma level. Cytokines and chemokines drive cell recruitment, activity, and function and ultimately determine the success or failure of the host to control infection. In calves, early lesions (ie, 15 and 30 days) after experimental aerosol infection were examined microscopically using in situ hybridization and immunohistochemistry to demonstrate early infiltrates of CD68+ macrophages within alveoli and alveolar interstitium, as well as the presence of CD4, CD8, and γδ T cells. Unlike lesions at 15 days, lesions at 30 days after infection contained small foci of necrosis among infiltrates of macrophages, lymphocytes, neutrophils, and multinucleated giant cells and extracellular acid-fast bacilli within necrotic areas. At both time points, there was abundant expression of the chemokines CXCL9, MCP-1/CCL2, and the cytokine transforming growth factor (TGF)-ß. The proinflammatory cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-1ß, as well as the anti-inflammatory cytokine IL-10, were expressed at moderate levels at both time points, while expression of IFN-γ was limited. These findings document the early pulmonary lesions after M. bovis infection in calves and are in general agreement with the proposed pathogenesis of tuberculosis described in laboratory animal and nonhuman primate models of tuberculosis.
Assuntos
Granuloma/veterinária , Interações Hospedeiro-Patógeno , Mycobacterium bovis/fisiologia , Tuberculose Bovina/microbiologia , Aerossóis , Animais , Bovinos , Quimiocinas/análise , Citocinas/análise , Células Gigantes/patologia , Granuloma/metabolismo , Granuloma/microbiologia , Granuloma/patologia , Imuno-Histoquímica/veterinária , Hibridização In Situ/veterinária , Pulmão/patologia , Linfócitos/patologia , Macrófagos/patologia , Mycobacterium bovis/patogenicidade , Neutrófilos/patologia , Tuberculose Bovina/metabolismo , Tuberculose Bovina/patologiaRESUMO
Wild banded mongooses ( Mungos mungo) in northeastern Botswana and northwest Zimbabwe are infected with a novel Mycobacterium tuberculosis complex (MTC) pathogen, Mycobacterium mungi. We evaluated gross and histologic lesions in 62 infected mongooses (1999-2017). Many tissues contained multifocal irregular, lymphohistiocytic to granulomatous infiltrates and/or multifocal or coalescing noncaseating to caseating granulomas with variable numbers of intralesional acid-fast bacilli. Over one-third of nasal turbinates examined had submucosal lymphohistiocytic to granulomatous infiltrates, erosion and ulceration of the nasal mucosa, bony remodeling, and nasal distortion. Similar inflammatory cell infiltrates expanded the dermis of the nasal planum with frequent ulceration. However, even in cases with intact epidermis, acid-fast bacilli were present in variable numbers among dermal infiltrates and on the epidermal surface among desquamated cells and debris, most commonly in small crevices or folds. In general, tissue involvement varied among cases but was highest in lymph nodes (50/54, 93%), liver (39/53, 74%), spleen (37/51, 73%), and anal glands/sacs (6/8, 75%). Pulmonary lesions were present in 67% of sampled mongooses (35/52) but only in advanced disseminated disease. The pathological presentation of M. mungi in the banded mongoose is consistent with pathogen shedding occurring through scent-marking behaviors (urine and anal gland secretions) with new infections arising from contact with these contaminated olfactory secretions and percutaneous movement of the pathogen through breaks in the skin, nasal planum, and/or skin of the snout. Given the character and distribution of lesions and the presence of intracellular acid-fast bacilli, we hypothesize that pathogen spread occurs within the body through a hematogenous and/or lymphatic route. Features of prototypical granulomas such as multinucleated giant cells and peripheral fibrosis were rarely present in affected mongooses. Acid-fast bacilli were consistently found intracellularly, even in regions of necrosis. The mongoose genome has a unique deletion (RD1mon) that includes part of the encoding region for PPE68 (Rv3873), a gene co-operonic with PE35. These proteins can influence the host's cellular immune response to mycobacterial infections, and it remains uncertain how this deletion might contribute to observed patterns of pathology. M. mungi infection in banded mongooses is characterized by both a unique transmission and exposure route, as well as accompanying pathological features, providing an opportunity to increase our understanding of MTC pathogenesis across host-pathogen systems.
Assuntos
Herpestidae/microbiologia , Infecções por Mycobacterium/veterinária , Mycobacterium , Sacos Anais/patologia , Animais , Feminino , Fígado/patologia , Pulmão/patologia , Linfonodos/patologia , Masculino , Infecções por Mycobacterium/microbiologia , Infecções por Mycobacterium/patologia , Pele/patologia , Baço/patologiaRESUMO
OBJECTIVE: To report the successful surgical treatment of a comminuted left acetabular fracture, a dorsally luxated left femoral head, and avulsion of the ligament of the femoral head by femoral head ostectomy (FHO) and physical therapy in a companion Potbelly pig. STUDY DESIGN: Case report. ANIMALS: A 1-year-old, 13 kg, castrated male, companion Potbelly pig. METHODS: The pig presented with a nonweight bearing left pelvic limb lameness of 3 weeks' duration that was noticed shortly after the pig got caught under a fence. Under general anesthesia a lateral approach was made to the fractured limb. A FHO was performed as described for dogs. Following surgery, a period of physical therapy was initiated based on protocols described for dogs. RESULTS: The canine surgical procedure with the approach modified for pigs was successfully performed in our pig. Following surgery, the pig was comfortable and weight bearing. A physical therapy regimen of supervised activity, stairs, and water therapy was used to rehabilitate the leg, as well as a weight management protocol to maintain ideal body condition. The owner was highly satisfied with the outcome. Telephone follow-up with the owner at 12 months after surgery revealed no impairment to movement, and the pig was maintaining normal ambulation without lameness. No complications were observed with this case. CONCLUSION: FHO, as described for dogs, provided a favorable outcome for hip luxation caused by acetabular fracture, luxation, and avulsion of the femoral head ligament in this small size Potbelly pig.
Assuntos
Acetábulo/lesões , Luxação do Quadril/veterinária , Osteotomia/veterinária , Suínos/lesões , Acetábulo/diagnóstico por imagem , Animais , Artroplastia de Quadril/veterinária , Luxação do Quadril/diagnóstico por imagem , Luxação do Quadril/cirurgia , Masculino , Amplitude de Movimento Articular , Suínos/cirurgia , Suporte de CargaRESUMO
Bovine tuberculosis is caused by Mycobacterium bovis, a member of the M. tuberculosis complex of mycobacterial species that cause tuberculosis in humans and animals. Diagnosis of bovine tuberculosis has relied on examinations of cell-mediated immune responses to M. bovis proteins using tuberculin skin testing and/or interferon gamma release assays. Even when using these methods, disease detection during the earliest phases of infection has been difficult, allowing a window for cattle-to-cattle transmission to occur within a herd. Alternative means of diagnosis could include methods to detect M. bovis or M. bovis DNA in bodily fluids such as nasal secretions, saliva, or blood. During the first 8 weeks after experimental aerosol infection of 18 calves, M. bovis DNA was detected in nasal swabs from a small number of calves 5, 6, and 8 weeks after infection and in samples of saliva at 1, 7, and 8 weeks after infection. However, at no time could culturable M. bovis be recovered from nasal swabs or saliva. M. bovis DNA was not found in blood samples collected weekly and examined by real-time PCR. Interferon gamma release assays demonstrated successful infection of all calves, while examination of humoral responses using a commercial ELISA identified a low number of infected animals at weeks 4-8 after infection. Examination of disease severity through gross lesion scoring did not correlate with shedding in nasal secretions or saliva, and calves with positive antibody ELISA results did not have more severe disease than other calves.
RESUMO
BACKGROUND: Treponeme-Associated Hoof Disease (TAHD) is a polybacterial, multifactorial disease affecting free-ranging wild elk (Cervus canadensis) in the Pacific Northwest. Previous studies have indicated a bacterial etiology similar to digital dermatitis in livestock, including isolation of Treponema species from lesions. The lesions appear to progress rapidly from ulcerative areas in the interdigital space or along the coronary band to severe, ulcerative, necrotic, proliferative lesions under-running the hoof wall, perforating the sole, and contributing to hoof elongation, deformity, and overgrowth. Eventually the lesions undermine the laminal structure leading to sloughing of the hoof horn capsule. The objective of this study was to characterize the bacterial communities associated with hoof lesions, which were categorized into 5 stages or disease grade severities, with 0 being unaffected tissue and 4 being sloughed hoof capsule. We also wanted to determine if the etiology of TAHD through morphological changes was dominated by Treponema, as observed in hoof diseases in livestock. RESULTS: The bacterial 16S rRNA gene was sequenced from 66 hoof skin biopsy samples representing 5 lesion grades from samples collected by Washington Department of Fish and Wildlife as part of a voluntary hunter program. Analysis of the relative abundance of bacterial sequences showed that lesions were dominated by members of the bacterial phyla Proteobacteria, Firmicutes, Spirochaetes, Bacteroidetes and Actinobacteria. In lesion samples, members of the genus Treponema, Porphyromonas, and Mycoplasma increased with lesion severity. Association analysis indicated frequent identification of Treponema with Porphyromonas, Bacteroides and other anaerobic Gram-positive cocci. CONCLUSIONS: The bacterial 16S rRNA gene sequencing confirmed the presence of Treponema species at all stages of TAHD lesions, treponeme specie-specific PCR and histopathology, indicating that the morphological changes are a continual progression of disease severity with similar bacterial communities. Association and abundance of these other pathogenic genera within lesions may mean synergistic role with Treponema in hoof disease pathogenesis. Characterizing bacteria involved in lesion development, and their persistence during disease progression, provides evidence for science-based management decisions in TAHD infected elk populations.
RESUMO
Mycoplasma bovis (M. bovis) is the etiologic agent of high mortality epizootics of chronic respiratory disease in American bison (Bison bison). Despite the severity of the disease, no efficacious commercial vaccines have been licensed for the prevention of M. bovis infection in bison. Elongation factor thermal unstable (EFTu) and Heat Shock Protein 70 (Hsp70, DnaK) are highly conserved, constitutively expressed proteins that have previously been shown to provide protection against M. bovis infection in cattle. To assess the suitability of EFTu and Hsp70 as vaccine antigens in bison, the immune response to and protection conferred by an injectable, adjuvanted subunit vaccine comprised of recombinantly expressed EFTu and Hsp70 was evaluated. Vaccinates developed robust antibody and cellular immune responses against both EFTu and Hsp70 antigens. To assess vaccine efficacy, unvaccinated control and vaccinated bison were experimentally challenged with bovine herpes virus-1 (BHV-1) 4 days prior to intranasal infection with M. bovis. Vaccinated bison displayed reductions in joint infection, lung bacterial loads, and lung lesions compared to unvaccinated controls. Together, these results showed that this subunit vaccine reduced clinical disease and bacterial dissemination from the lungs in M. bovis challenged bison and support the further development of protein subunit vaccines against M. bovis for use in bison.
RESUMO
Introduction: The antiviral activity of recombinant bovine interferon lambda 3 (bovIFN-λ3) against bovine viral diarrhea virus (BVDV) has been demonstrated in vitro in Madin-Darby bovine kidney cells (MDBK) and in vivo in cattle. However, anti-BVDV activity of bovIFN-λ3 has not been studied in bovine respiratory tract epithelial cells, supposedly a primary target of BVDV infection when entering the host by the oronasal route. Methods: Here we investigated the anti-BVDV activity of bovIFN-λ3 in bovine turbinate-derived primary epithelial cells (BTu) using BVDV infection and immunoperoxidase staining, TCID50, RT-qPCR, DNA and transcriptome sequencing, and transfection with plasmids containing the two subunits, IL-28Rα and IL-10Rß that constitute the bovIFN-λ3 receptor. Results: Our immunoperoxidase staining, RT-qPCR, and TCID50 results show that while BVDV was successfully cleared in MDBK cells treated with bovIFN-λ3 and bovIFN-α, only the latter, bovIFN-α, cleared BVDV in BTu cells. Preincubation of MDBK cells with bovIFN-λ3 before BVDV infection was needed to induce optimal antiviral state. Both cell types displayed intact type I and III IFN signaling pathways and expressed similar levels of IL-10Rß subunit of the type III IFN receptor. Sequencing of PCR amplicon of the IL-28Rα subunit revealed intact transmembrane domain and lack of single nucleotide polymorphisms (SNPs) in BTu cells. However, RT-qPCR and transcriptomic analyses showed a lower expression of IL-28Rα transcripts in BTu cells as compared to MDBK cells. Interestingly, transfection of BTu cells with a plasmid encoding IL-28Rα subunit, but not IL-10Rß subunit, established the bovIFN-λ3 sensitivity showing similar anti-BVDV activity to the response in MDBK cells. Conclusion: Our results demonstrate that the sensitivity of cells to bovIFN-λ3 depends not only on the quality but also of the quantity of the IL-28Rα subunit of the heterodimeric receptor. A reduction in IL-28Rα transcript expression was detected in BTu as compared to MDBK cells, despite the absence of spliced variants or SNPs. The establishment of bovIFN-λ3 induced anti-BVDV activity in BTu cells transfected with an IL-28Rα plasmid suggests that the level of expression of this receptor subunit is crucial for the specific antiviral activity of type III IFN in these cells.
Assuntos
Interferon lambda , Interferons , Conchas Nasais , Animais , Bovinos , Interferons/metabolismo , Interferons/imunologia , Conchas Nasais/virologia , Conchas Nasais/imunologia , Conchas Nasais/metabolismo , Antivirais/farmacologia , Vírus da Diarreia Viral Bovina/imunologia , Vírus da Diarreia Viral Bovina/fisiologia , Receptores de Interleucina/genética , Receptores de Interleucina/metabolismo , Células Epiteliais/virologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Interleucinas/genética , Interleucinas/farmacologia , Interleucinas/imunologia , Interleucinas/metabolismo , Linhagem Celular , Doença das Mucosas por Vírus da Diarreia Viral Bovina/imunologia , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Proteínas Recombinantes/farmacologia , Subunidade beta de Receptor de Interleucina-10/genética , Subunidade beta de Receptor de Interleucina-10/metabolismo , Receptores de CitocinasRESUMO
In many parts of the world, bovine tuberculosis eradication efforts are hampered by wildlife reservoirs of Mycobacterium bovis, which serve as a constant source of M. bovis for nearby cattle. The human tuberculosis vaccine, M. bovis BCG has been investigated for use in several wildlife species, including deer. In the US, white-tailed deer in Michigan have been the source of infection for over 82 cattle herds since M. bovis was discovered in free-ranging deer in 1995. The efficacy of BCG may be influenced by many factors, including prior exposure or infection with non-tuberculous mycobacteria, that is, species other than members of the M. tuberculosis complex. M. avium subspecies paratuberculosis (Map) infection is not uncommon in ruminants such as deer. Using natural exposure to Map and experimental infection with M. bovis, we demonstrate that Map infection increased BCG vaccine efficacy as measured by lesion severity scores.
RESUMO
The bovine tuberculoid granuloma is the hallmark lesion of bovine tuberculosis (bTB) due to Mycobacterium bovis infection. The pathogenesis of bTB, and thereby the process of bovine tuberculoid granuloma development, involves the recruitment, activation, and maintenance of cells under the influence of antigen, cytokines and chemokines in affected lungs and regional lymph nodes. The granuloma is key to successful control of bTB by preventing pathogen dissemination through containment by cellular and fibrotic layers. Paradoxically, however, it may also provide a niche for bacterial replication. The morphologic and cellular characteristics of granulomas have been used to gauge disease severity in bTB pathogenesis and vaccine efficacy studies. As such, it is critical to understand the complex mechanisms behind granuloma initiation, development, and maintenance.
RESUMO
Bovine tuberculosis (bTB), caused by infection with Mycobacterium bovis, continues to be a major economic burden associated with production losses and a public health concern due to its zoonotic nature. As with other intracellular pathogens, cell-mediated immunity plays an important role in the control of infection. Characterization of such responses is important for understanding the immune status of the host, and to identify mechanisms of protective immunity or immunopathology. This type of information can be important in the development of vaccination strategies, diagnostic assays, and in predicting protection or disease progression. However, the frequency of circulating M. bovis-specific T cells are often low, making the analysis of such responses difficult. As previously demonstrated in a different cattle infection model, antigenic expansion allows us to increase the frequency of antigen-specific T cells. Moreover, the concurrent assessment of cytokine production and proliferation provides a deeper understanding of the functional nature of these cells. The work presented here, analyzes the T cell response following experimental M. bovis infection in cattle via in vitro antigenic expansion and re-stimulation to characterize antigen-specific CD4, CD8, and γδ T cells and their functional phenotype, shedding light on the variable functional ability of these cells. Data gathered from these studies can help us better understand the cellular response to M. bovis infection and develop improved vaccines and diagnostic tools.
RESUMO
Mycobacterium bovis is the cause of tuberculosis in most animals, most notably cattle. The stereotypical lesion of bovine tuberculosis is the granuloma; a distinct morphological lesion where host and pathogen interact and disease outcome (i.e., dissemination, confinement, or resolution) is determined. Accordingly, it is critical to understand host-pathogen interactions at the granuloma level. Host-pathogen interactions within individual granulomas at different stages of disease have not been examined in cattle. We examined bacterial burden and cytokine expression in individual pulmonary granulomas from steers at 30, 90, 180, and 270 days after experimental aerosol infection with M. bovis. Bacterial burdens within individual granulomas examined 30 days after infection were greater and more heterogenous (variable) than those examined 90 to 270 days after infection. Bacterial burdens did not correlate with expression of IFN-γ, TNF-α, TGF-ß, granuloma stage, or lung lesion score, although there was a modest positive correlation with IL-10 expression. Granuloma stage did have modest positive and negative correlations with TNF-α and IL-10, respectively. Heterogeneity and mean expression of IFN-γ, IL-10 and TNF-α did not differ significantly over time, however, expression of TGF-ß at 90 days was significantly greater than that seen at 30 days after infection.
RESUMO
While Mycobacterium tuberculosis is the primary cause of tuberculosis in people, multiple other mycobacteria are capable of doing so. With the World Health Organization's goal of a 90% reduction in tuberculosis by 2035, all tuberculous mycobacteria need to be addressed. Understanding not only the similarities, but importantly the differences between the different species is crucial if eradication is ever to be achieved. Mycobacterium bovis, while typically thought of as a disease of cattle, remains a possible source of human infection worldwide. Although this species' genome differs from Mycobacterium tuberculosis by only 0.05%, significant differences are present, creating unique challenges to address. This review focuses on features which distinguish this bacterium from Mycobacterium tuberculosis, including differences in origin, structure, environmental persistence, host preferences, infection and disease, host immune response, diagnostics and treatment.
Assuntos
Mycobacterium bovis/isolamento & purificação , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose Bovina/microbiologia , Tuberculose/microbiologia , Zoonoses/transmissão , Animais , Bovinos , Humanos , Tuberculose/transmissãoRESUMO
Fading elk syndrome, or chronic ill-thrift of elk, is a disease associated with abomasal parasitism with Ostertagia species, of which elk appear to be particularly susceptible. While this syndrome has been extensively reported to affect wapiti-type red deer hybrids farmed in New Zealand since the mid 1980's, there is only a single report of this disease in North America. Here, we report a case of fading elk syndrome in a herd of 34 elk (Cervus elaphus) in Ames, Iowa, at the National Animal Disease Center. Analysis of complete blood counts were unremarkable, but blood chemistry demonstrated a severe hypoalbuminemia. Fecal floatations were also unremarkable, and non-diagnostic. Histological examination of tissues collected at necropsy revealed proliferative abomasitis and nematodes consistent with Ostertagia spp. Anthelmintic treatment consisting of a combination of pour-on Cydectin® and injectable Noromectin Plus®, at double the recommended dose for cattle, showed positive results, as all remaining animals in the herd recovered. The work presented here is the first report of naturally-acquired disease in a herd of captive elk used for research and sheds light on this seldomly-reported disease in North America.
RESUMO
Whole blood based assays, particularly interferon gamma (IFN-γ) release assays (IGRAs), are used for the diagnosis of both bovine and human tuberculosis (TB). The aim of the current study was to evaluate a panel of cytokines and chemokines for potential use as diagnostic readouts indicative of Mycobacterium bovis (M. bovis) infection in cattle. A gene expression assay was used to determine the kinetics of the response to M. bovis purified protein derivative and a fusion protein consisting of ESAT-6, CFP10, and Rv3615c upon aerosol infection with â¼104 cfu of M. bovis. The panel of biomarkers included: IFN-γ, CXCL9, CXCL10, CCL2, CCL3, TNF-α, IL-1α, IL-1ß, IL-1Ra, IL-22, IL-21 and IL-13. Protein levels of IFN-γ, CXCL9, and CXCL10 were determined by ELISA. Findings suggest that CXCL9, CXCL10, IL-21, IL-13, and several acute phase cytokines may be worth pursuing as diagnostic biomarkers of M. bovis infection in cattle.
Assuntos
Doenças dos Bovinos/diagnóstico , Citocinas/genética , Imunidade Celular , Tuberculose Bovina/diagnóstico , Tuberculose Bovina/imunologia , Animais , Biomarcadores/sangue , Bovinos , Doenças dos Bovinos/sangue , Doenças dos Bovinos/imunologia , Quimiocina CXCL10/sangue , Quimiocina CXCL9/sangue , Citocinas/imunologia , Expressão Gênica , Interferon gama , Testes de Liberação de Interferon-gama , Masculino , Mycobacterium bovis , Tuberculose Bovina/sangueRESUMO
Mycobacteria are important causes of disease in human and animal hosts. Diseases caused by mycobacteria include leprosy, tuberculosis (TB), nontuberculous mycobacteria (NTM) infections and Buruli Ulcer. To better understand and treat mycobacterial disease, clinicians, veterinarians and scientists use a range of discipline-specific approaches to conduct basic and applied research, including conducting epidemiological surveys, patient studies, wildlife sampling, animal models, genetic studies and computational simulations. To foster the exchange of knowledge and collaboration across disciplines, the Many Hosts of Mycobacteria (MHM) conference series brings together clinical, veterinary and basic scientists who are dedicated to advancing mycobacterial disease research. Started in 2007, the MHM series recently held its 8th conference at the Albert Einstein College of Medicine (Bronx, NY). Here, we review the diseases discussed at MHM8 and summarize the presentations on research advances in leprosy, NTM and Buruli Ulcer, human and animal TB, mycobacterial disease comorbidities, mycobacterial genetics and 'omics, and animal models. A mouse models workshop, which was held immediately after MHM8, is also summarized. In addition to being a resource for those who were unable to attend MHM8, we anticipate this review will provide a benchmark to gauge the progress of future research concerning mycobacteria and their many hosts.
Assuntos
Bacteriologia , Pesquisa Biomédica , Infectologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium/patogenicidade , Tuberculose/microbiologia , Animais , Congressos como Assunto , Difusão de Inovações , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Humanos , Mycobacterium/genética , Infecções por Mycobacterium não Tuberculosas/diagnóstico , Infecções por Mycobacterium não Tuberculosas/epidemiologia , Tuberculose/diagnóstico , Tuberculose/epidemiologiaRESUMO
Paratuberculosis (Johne's disease) is caused by Mycobacterium avium ssp. paratuberculosis (MAP), and affects both domestic and wild ruminants, including cattle, goats, sheep, and deer. In cattle, most infections occur during calfhood followed by a prolonged incubation period of 1-2 y or more before cows shed culturable numbers of MAP bacilli in their feces. As disease progresses, infected animals develop protein-losing enteropathy, intractable diarrhea, and weight loss. In a cohort of 32 clinically normal deer from a herd with a history of periodic clinical paratuberculosis, we found that subclinical infection was characterized by high rates of infection, common involvement of mesenteric lymph nodes, minimal lesion formation, few intralesional acid-fast bacilli, and low-level fecal shedding of MAP. The characteristics of subclinical paratuberculosis in white-tailed deer resemble those of cattle and red deer, although microscopic lesions were less common in subclinical deer than reported for subclinical cattle, and we did not see necrotizing granulomas as described in subclinical red deer and elk.
Assuntos
Infecções Assintomáticas , Mycobacterium avium subsp. paratuberculosis/isolamento & purificação , Paratuberculose/diagnóstico , Animais , Cervos , Fezes/microbiologia , Iowa , Paratuberculose/microbiologiaRESUMO
Brucellosis is a bacterial zoonosis and a significant source of economic loss and a major public health concern, worldwide. Bovine brucellosis, as caused primarily by Brucella abortus, is an important cause of reproductive loss in cattle. Vaccination has been the most effective way to reduce disease prevalence contributing to the success of control and eradication programs. Currently, there are no human vaccines available, and despite the success of commercial vaccines for livestock, such as B. abortus strain RB51 (RB51), there is need for development of novel and safer vaccines against brucellosis. In the current study, we report the fabrication of and immune responses to an implantable single dose polyanhydride-based, methanol-killed RB51 antigen containing delivery platform (VPEAR) in cattle. In contrast to animals vaccinated with RB51, we did not observe measurable RB51-specific IFN-γ or IgG responses in the peripheral blood, following initial vaccination with VPEAR. However, following a subsequent booster vaccination with RB51, we observed an anamnestic response in both vaccination treatments (VPEAR and live RB51). The magnitude and kinetics of CD4+ IFN-γ-mediated responses and circulating memory T cell subpopulations were comparable between the two vaccination treatments. Additionally, IgG titers were significantly increased in animals vaccinated with VPEAR as compared to live RB51- vaccinated animals. These data demonstrate that killed antigen may be utilized to generate and sustain memory, IFN-γ-mediated, CD4+ T cell and humoral responses against Brucella in a natural host. To our knowledge, this novel approach to vaccination against intracellular bacteria, such as Brucella, has not been reported before.