Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Biomacromolecules ; 25(3): 1775-1789, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38377594

RESUMO

The objective of this study is to enhance the therapeutic efficacy of the anticancer drug, camptothecin (CPT) via a nanoparticle (NP) formulation using a novel amphiphilic biopolymer. We have designed a dimeric prodrug of CPT with the ability to self-amplify and respond to reactive oxygen species (ROS). For this, we incorporated the intracellular ROS generator cinnamaldehyde into a ROS-cleavable thioacetal (TA) linker to obtain the dimeric prodrug of CPT (DCPT(TA)). For its efficient NP delivery, a pH-responsive block copolymer of acetalated dextran and poly(2-ethyl-2-oxazoline) (AcDex-b-PEOz) was synthesized. The amphiphilic feature of the block copolymer enables its self-assembly into micellar NPs and results in high prodrug loading capacity and a rapid release of the prodrug under acidic conditions. Upon cellular uptake by HeLa cells, DCPT(TA)-loaded micellar NPs induce intracellular ROS generation, resulting in accelerated prodrug activation and enhanced cytotoxicity. These results indicate that this system holds significant potential as an effective prodrug delivery strategy in anticancer treatment.


Assuntos
Nanopartículas , Pró-Fármacos , Humanos , Pró-Fármacos/farmacologia , Micelas , Espécies Reativas de Oxigênio , Células HeLa , Camptotecina/farmacologia , Polímeros , Concentração de Íons de Hidrogênio , Sistemas de Liberação de Medicamentos
2.
Biomacromolecules ; 24(5): 2138-2148, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37079077

RESUMO

Biopolymer-based drug delivery systems have gained considerable attention in the field of nanomedicine. In this study, a protein-polysaccharide conjugate was synthesized by covalent conjugation of the enzyme horseradish peroxidase (HRP) with acetalated dextran (AcDex) via a thiol exchange reaction. The resulting bioconjugate shows a dual-responsive behavior in acidic and reductive environments to achieve a controlled release of drugs. The self-assembly of this amphiphilic HRP-AcDex conjugate allows the encapsulation of prodrug indole-3-acetic acid (IAA) into the hydrophobic polysaccharide core. Under slightly acidic conditions, the acetalated polysaccharide reverts to its native hydrophilic form, which triggers the disassembly of micellar nanoparticles and the release of the encapsulated prodrug. The conjugated HRP further activates the prodrug by oxidation of IAA into cytotoxic radicals, which leads to cellular apoptosis. The results indicate that the HRP-AcDex conjugate in combination with IAA has great potential to be used as a novel enzyme prodrug therapy for cancer treatment.


Assuntos
Antineoplásicos , Pró-Fármacos , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Antineoplásicos/química , Apoptose , Peroxidase do Rábano Silvestre/química , Polissacarídeos/farmacologia
3.
Org Biomol Chem ; 19(21): 4685-4690, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-33982725

RESUMO

An (R)-DM-BINAP/Cu(CH3CN)4BF4 complex catalyzed exo-selective asymmetric 1,3-dipolar cycloaddition (1,3-DCA) reaction of imino esters with α,ß-unsaturated pyrazoleamides has been developed. A series of highly functionalized pyrrolidines with multiple stereogenic centers were obtained with good yields and diastereoselectivities and excellent enantioselectivities (up to 99% ee).

4.
Nanomedicine ; 31: 102303, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32980549

RESUMO

MicroRNAs (miRNAs) play a fundamental role in the developmental and physiological processes that occur in both animals and plants. AntagomiRs are synthetic antagonists of miRNA, which prevent the target mRNA from suppression. Therapeutic approaches that modulate miRNAs have immense potential in the treatment of chronic respiratory disorders. However, the successful delivery of miRNAs/antagomiRs to the lungs remains a major challenge in clinical applications. A range of materials, namely, polymer nanoparticles, lipid nanocapsules and inorganic nanoparticles, has shown promising results for intracellular delivery of miRNA in chronic respiratory disorders. This review discusses the current understanding of miRNA biology, the biological roles of antagomiRs in chronic respiratory disease and the recent advances in the therapeutic utilization of antagomiRs as disease biomarkers. Furthermore our review provides a common platform to debate on the nature of antagomiRs and also addresses the viewpoint on the new generation of delivery systems that target antagomiRs in respiratory diseases.


Assuntos
Antagomirs/química , Antagomirs/uso terapêutico , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Nanopartículas/química , Animais , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Nanocápsulas/química , Nanotecnologia/métodos , Polímeros/química
5.
J Org Chem ; 84(6): 3275-3292, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30789265

RESUMO

An efficient route to enantioenriched propargylamines via a three-component alkynylation reaction using cooperative catalysis with a CuI- iPrpyboxdiPh complex and N-Boc-(l)-proline has been accomplished. A variety of functionalized amines, aldehydes, and 2-ethynyl anilines were reacted smoothly at ambient temperature to furnish a wide range of propargylamines in high yields (up to 94%) and excellent enantioselectivities (up to 98% ee). Synthetic utility of the methodology has been demonstrated by transforming the products into various synthetically useful intermediates. Finally, propargylamines were transformed into biologically important (indol-2-yl)methanamines over two steps in good yields (up to 88%) with an excellent level of enantioselectivities (up to 95%).

6.
J Org Chem ; 84(24): 15865-15876, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31741383

RESUMO

BF3·OEt2-catalyzed nucleophilic addition of vinyl azides to in situ generated N-acyl iminium salts obtained from 3-hydroxyisoindolinones is described in this article. The procedure is operationally simple, mild, additive, and metal-free. The reaction proceeds smoothly at ambient temperature with a wide range of 3-hydroxyisoindol-1-ones and vinyl azides to afford 3-oxoisoindoline-1-acetamides (32 examples) in high yields (up to 97%). Furthermore, the synthetic utility of this methodology is depicted by exploiting the reactivity of an amide functionality in the products.

7.
J Fluoresc ; 27(2): 561-567, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27858299

RESUMO

The chemistry of thiol-chromophore linkage plays a central role in the nature of fluorescence of phycoerythrin (PE). Interaction of thiol and chromophore is crucial for the energy transfer, redox signal and inhibition of oxidative damage. In the present investigation the effects of ultraviolet-B radiation on an emission fluorescence intensity and wavelength shift in PE due to interaction between thiol and chromophore by remarkable strategy of detection technique was studied. Purification of PE was done by using a gel permeation and ion exchange chromatography that yielded a quite high purity index (6.40) in a monomeric (αß) form. UV-B radiation accelerated the quenching efficiency (24.9 ± 1.52%) by reducing fluorescence emission intensity of thiol linked chromophore after 240 min of UV-B exposure. However, after blocking of transiently released free thiol by N-ethylmaleimide, quenching efficiency was increased (36.8 ± 2.80%) with marked emission wavelength shift towards shorter wavelengths up to 562 nm as compared to 575 nm in control. Emission fluorescence of free thiol was at maximum after 240 min that was detected specifically by monobromobimane (mBrB) molecular probe. The association/dissociation of bilin chromophore was analyzed by SDS- and Native-PAGE that also indicated a complete reduction in emission fluorescence. Our work clearly shows an early detection of free thiols and relative interaction with chromophore after UV-B radiation which might play a significant role in structural and functional integrity of terminal PE.

8.
Int J Biol Macromol ; 279(Pt 3): 135261, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39244116

RESUMO

Synthetic polymers have been widely thriving as mega industries at a commercial scale in various commercial sectors over the last few decades. The extensive use of synthetic polymers has caused several negative repercussions on the health of humans and the environment. Recently, biopolymers have gained more attention among scientists of different disciplines by their potential therapeutic and commercial applications. Biopolymers are chain-like repeating units of molecules isolated from green sources. They are self-degradable, biocompatible, and non-toxic in nature. Recently, eco-friendly biopolymers such as extracellular polymeric substances (EPSs) have received much attention for their wide applications in the fields of emulsification, flocculation, preservatives, wastewater treatment, nanomaterial functionalization, drug delivery, cosmetics, glycomics, medicinal chemistry, and purification technology. The dynamicity of applications has raised the industrial and consumer demands to cater to the needs of mankind. This review deals with current insights and highlights on database surveys, potential sources, classification, extremophilic EPSs, bioprospecting, patents, microenvironment stability, biosynthesis, and genetic advances for production of high valued ecofriendly polymers. The importance of high valued EPSs in commercial and industrial applications in the global market economy is also summarized. This review concludes with future perspectives and commercial applications for the well-being of humanity.


Assuntos
Bactérias , Biopolímeros/química , Biopolímeros/biossíntese , Bactérias/metabolismo , Humanos , Biotecnologia/métodos
9.
Plant Physiol Biochem ; 216: 109186, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39388751

RESUMO

Global population expansion has increased the demand for food supply and agricultural productivity. Abiotic stressors like temperature have significantly restricted agriculture in cropland and jeopardized food security. Cyanobacteria play a crucial role in fostering sustainable agriculture and ensuring global food security. In the present study, we have assessed the effect of temperatures on diazotrophic free living rice-field and hot-spring cyanobacteria. They were treated to a variable range of temperatures to see the changes in cellular morphology, physiology, and biochemical characteristics. The rise of temperatures induces growth (60 %), total protein (54 %) contents of rice-field cyanobacterium until 25 °C, further treatment results in decline (20 %) at 45 °C. However, growth indices were increased till 35 °C (90 %) in hot-spring cyanobacterium and further treatment did not exhibit a significant decline in the same. However, the reactive oxygen species (ROS) generation and lipid peroxidation (LPO) were higher in rice-field (2.8 and 1.7 fold) as compared to hot-spring cyanobacterium (2.2 and 1.6 fold). In response to temperature, enzymatic antioxidant contents were much higher in hot-spring as compared to rice-field cyanobacterium. Similarly, carotenoid and carbohydrate content was also higher in hot spring (2 fold) as compared to rice-field cyanobacterium (1.5 and 1.2 fold). All these data collectively suggest that hot-spring (Nostoc sp. strain VKB02) has a higher thermoprotective capacity with novel defense mechanisms as compared to rice-field cyanobacterium (Anabaena sp. strain VKB01). These findings contributed to a better understanding of the temperature stress, improvement of agricultural productivity and future welfare of green ecosystems.

10.
Mol Biotechnol ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652428

RESUMO

Melanin is the major pigment responsible for the coloring of mammalian skin, hair, and eyes to defend against ultraviolet radiation. However, excessive melanin production has resulted in numerous types of hyperpigmentation disorders. Tyrosinase-related protein 1 (TYRP1) is a transmembrane glycoprotein enzyme found in many organisms, including humans, that plays an important role in melanogenesis. Thus, controlling the enzyme activity of TYRP1 with tyrosinase inhibitors is a vital step in the treatment of hyperpigmentation problems in humans. In the present investigation, virtual screening, pharmacokinetics, drug docking, and molecular dynamics (MD) simulation were used to find the most potent drug as an inhibitor of TYRP1 to effectively treat hyperpigmentation disorder. The 3D structure of TYRP1 was retrieved from the Protein Data Bank (PDB) database (PDB ID: 5M8M) and validated by the Ramachandran plot. Pharmacokinetics and drug-likeness showed that mycosporine 2 glycine (M2G) and shinorine (SHI) were the best compounds over other ligands in the same (P-1) structural pose. However, MD simulations of the M2G showed the highest CDOCKER interaction energy (-45.182 kcal/mol) and binding affinity (-65.0529 kcal/mol) as compared to SHI and reference drugs. The molecular binding modes RMSD and RMSF plots have exhibited more relevance to the M2G ligand in comparison to other drug ligands. The bioactivity and ligand efficiency profiles revealed that M2G is the most effective compound as a TYRP1 inhibitor. Thus, M2G could be used as a most effective drug for developing valuable sunscreen products to cure hyperpigmentation-related diseases.

11.
Res Microbiol ; 175(5-6): 104180, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38199600

RESUMO

The continuous increase in global temperature and ultraviolet radiation (UVR) causes profound impacts on the growth and physiology of photosynthetic microorganisms. The hot-spring cyanobacteria have a wide range of mitigation mechanisms to cope up against current unsustainable environmental conditions. In the present investigation, we have explored the indispensable mitigation strategies of an isolated hot-spring cyanobacterium Nostoc sp. strain VKB02 under simulated ultraviolet (UV-A, UV-B) and photosynthetically active radiation (PAR). The adaptive morphological changes were more significantly observed under PAB (PAR, UV-A, and UV-B) exposure as compared to P and PA (PAR and UV-A) irradiations. PAB exposure also exhibited a marked decline in pigment composition and photosynthetic efficiency by multi-fold increment of free radicals. To counteract the oxidative stress, enzymatic and non-enzymatic antioxidants defense were significantly enhanced many folds under PAB exposure as compared to the control. In addition, the cyanobacterium has also produced shinorine as a strong free radicals scavenger and excellent UV absorber for effective photoprotection against UV radiation. Therefore, the hot-spring cyanobacterium Nostoc sp. strain VKB02 has unique defense strategies for survival under prolonged lethal UVR conditions. This study will help in the understanding of environment-induced defense strategies and production of highly value-added green photo-protectants for commercial applications.


Assuntos
Antioxidantes , Fontes Termais , Nostoc , Fotossíntese , Raios Ultravioleta , Nostoc/efeitos da radiação , Nostoc/metabolismo , Nostoc/crescimento & desenvolvimento , Nostoc/fisiologia , Antioxidantes/metabolismo , Fontes Termais/microbiologia , Estresse Oxidativo
12.
Chem Biol Interact ; 396: 111059, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38761875

RESUMO

Chronic inflammation, oxidative stress, and airway remodelling represent the principal pathophysiological features of chronic respiratory disorders. Inflammation stimuli like lipopolysaccharide (LPS) activate macrophages and dendritic cells, with concomitant M1 polarization and release of pro-inflammatory cytokines. Chronic inflammation and oxidative stress lead to airway remodelling causing irreversible functional and structural alterations of the lungs. Airway remodelling is multifactorial, however, the hormone transforming growth factor-ß (TGF-ß) is one of the main contributors to fibrotic changes. The signalling pathways mediating inflammation and remodelling rely both on the transcription factor nuclear factor-κB (NFκB), underlying the potential of NFκB inhibition as a therapeutic strategy for chronic respiratory disorders. In this study, we encapsulated an NFκB-inhibiting decoy oligodeoxynucleotide (ODN) in spermine-functionalized acetalated dextran (SpAcDex) nanoparticles and tested the in vitro anti-inflammatory and anti-remodelling activity of this formulation. We show that NF-κB ODN nanoparticles counteract inflammation by reversing LPS-induced expression of the activation marker CD40 in myeloid cells and counteracts remodelling features by reversing the TGF-ß-induced expression of collagen I and α-smooth muscle actin in human dermal fibroblast. In summary, our study highlights the great potential of inhibiting NFκB via decoy ODN as a therapeutic strategy tackling multiple pathophysiological features underlying chronic respiratory conditions.


Assuntos
Anti-Inflamatórios , Lipopolissacarídeos , NF-kappa B , Nanopartículas , Oligodesoxirribonucleotídeos , Espermina , Oligodesoxirribonucleotídeos/farmacologia , Oligodesoxirribonucleotídeos/química , Humanos , Nanopartículas/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , NF-kappa B/metabolismo , Espermina/farmacologia , Espermina/química , Lipopolissacarídeos/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibrose/tratamento farmacológico
13.
Chem Sci ; 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39479165

RESUMO

Host-defense peptides (HDPs) and their analogs hold significant potential for combating multidrug-resistant (MDR) bacterial infections. However, their clinical use has been hindered by susceptibility to proteases, high production costs, and cytotoxicity towards mammalian cells. Synthetic polymers with diverse topologies and compositions, designed to mimic HDPs, show promise for treating bacterial infections. In this study, we explored the antibacterial activity and biocompatibility of synthetic amphiphilic linear (LPs) and cyclic terpolymers (CPs) containing hydrophobic groups 2-ethylhexyl (E) and 2-phenylethyl (P) at 20% and 30% content. LPs were synthesized via RAFT polymerization and then cyclized into CPs through a hetero-Diels-Alder click reaction. The bioactivity of these terpolymers was correlated with their topology (LPs vs. CPs) and hydrophobic composition. LPs demonstrated superior antibacterial efficacy compared to CPs against four Gram-negative bacterial strains, with terpolymers containing (P) outperforming those with (E). Increasing the hydrophobicity from 20% to 30% in the terpolymers increased toxicity to both bacterial and mammalian cells. Notably, our terpolymers inhibited the MDR Gram-negative bacterial strain PA37 more effectively than gentamicin and ciprofloxacin. Furthermore, our terpolymers were able to disrupt cell membranes and rapidly eliminate Gram-negative bacteria (99.99% within 15 minutes). Interestingly, CPs exhibited higher hemocompatibility and biocompatibility with mammalian macrophage cells compared to LPs, showcasing a better safety profile (CPs > LPs). These findings underscore the importance of tailoring polymer architectures and optimizing the hydrophilic/hydrophobic balance to address challenges related to toxicity and selectivity in developing antimicrobial polymers.

14.
J Control Release ; 337: 629-644, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34375688

RESUMO

Nuclear factor κB (NFκB) is a unique protein complex that plays a major role in lung inflammation and respiratory dysfunction. The NFκB signaling pathway, therefore becomes an avenue for the development of potential pharmacological interventions, especially in situations where chronic inflammation is often constitutively active and plays a key role in the pathogenesis and progression of the disease. NFκB decoy oligodeoxynucleotides (ODNs) are double-stranded and carry NFκB binding sequences. They prevent the formation of NFκB-mediated inflammatory cytokines and thus have been employed in the treatment of a variety of chronic inflammatory diseases. However, the systemic administration of naked decoy ODNs restricts their therapeutic effectiveness because of their poor pharmacokinetic profile, instability, degradation by cellular enzymes and their low cellular uptake. Both structural modification and nanotechnology have shown promising results in enhancing the pharmacokinetic profiles of potent therapeutic substances and have also shown great potential in the treatment of respiratory diseases such as asthma, chronic obstructive pulmonary disease and cystic fibrosis. In this review, we examine the contribution of NFκB activation in respiratory diseases and recent advancements in the therapeutic use of decoy ODNs. In addition, we also highlight the limitations and challenges in use of decoy ODNs as therapeutic molecules, cellular uptake of decoy ODNs, and the current need for novel delivery systems to provide efficient delivery of decoy ODNs. Furthermore, this review provides a common platform for discussion on the existence of decoy ODNs, as well as outlining perspectives on the latest generation of delivery systems that encapsulate decoy ODNs and target NFκB in respiratory diseases.


Assuntos
NF-kappa B , Pneumonia , Citocinas , Humanos , Oligodesoxirribonucleotídeos
15.
Protoplasma ; 255(3): 885-898, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29255959

RESUMO

Circadian rhythm is an important endogenous biological signal for sustainable growth and development of cyanobacteria in natural ecosystems. Circadian effects of photosynthetically active radiation (PAR), ultraviolet-A (UV-A) and ultraviolet-B (UV-B) radiations on pigment composition have been studied in the cyanobacterium Spirulina platensis under light (L)/dark (D) oscillation with a combination of 4/20, 8/16, 12/12, 16/8, 20/4 and 24/24 h time duration. Circadian exposure of PAR + UV-A (PA) and PAR + UV-A + UV-B (PAB) showed more than twofold decline in Chl a, total protein and phycocyanin (PC) in light phase and significant recovery was achieved in dark phase. The fluorescence emission wavelength of PC was shifted towards lower wavelengths in the light phase of PAB in comparison to P and PA whereas the same wavelength was retrieved in the dark phase. The production of free radicals was accelerated twofold in the light phase (24 h L) whereas the same was retrieved to the level of control during the dark phase. Oxidatively induced damage was alleviated by antioxidative enzymes such as catalase (CAT), peroxidase (POD), superoxide dismutase (SOD) and ascorbate peroxidase (APX) in the light phase (0-24-h L) whereas the dark phase showed significant inhibition of the same enzymes. Similar characteristic inhibition of free radicals and recovery of PC was observed inside cellular filament after circadian rhythm of 24/24 h (L/D). Circadian exposure of P, PA and PAB significantly altered the synthesis and recovery of pigments that could be crucial for optimization and sustainable production of photosynthetic products for human welfare.


Assuntos
Ritmo Circadiano/fisiologia , Fotossíntese , Pigmentos Biológicos/metabolismo , Spirulina/fisiologia , Antioxidantes/metabolismo , Ritmo Circadiano/efeitos da radiação , Fluorescência , Radicais Livres/metabolismo , Luz , Fotossíntese/efeitos da radiação , Ficocianina/metabolismo , Proteínas de Plantas/metabolismo , Espectrofotometria , Spirulina/enzimologia , Spirulina/efeitos da radiação
16.
Protoplasma ; 254(1): 423-433, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27026262

RESUMO

The effects of diurnal variation of photosynthetically active radiation (PAR; 400-700 nm) and ultraviolet-B (UV-B; 280-315 nm) radiation on phycobiliproteins (PBPs) and photosynthetic pigments (PP) have been studied in the hot-spring cyanobacterium Nostoc sp. strain HKAR-2. The variations in PBPs and PP were monitored by alternating light and dark under PAR, UV-B, and PAR + UV-B radiations over a period of 25 h. There was a decline in the amount of Chl a and PBPs during light periods of UV-B and PAR + UV-B and an increase during dark periods showing a circadian rhythm by destruction and resynthesis of pigment-protein complex. However, a marked induction in carotenoids was recorded during light periods of the same radiations. Moreover, the ratio of Chl a/PE and Chl a/PC was increased in dark periods showing the resynthesis of bleached Chl a. The wavelength shift in emission fluorescence of PBPs toward shorter wavelengths further indicated the bleaching and destruction of PBPs during light periods. Oxidative damage upon exposure to PAR, UV-B, and PAR + UV-B was alleviated by induction of antioxidative enzymes such as superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX). The studied cyanobacterium exhibits a significant increase in the activities of SOD, CAT, and APX upon exposure to UV-B and PAR + UV-B radiations. The results indicate that pigment-protein composition of Nostoc sp. stain HKAR-2 was significantly altered during diurnal variation of light/radiation, which might play an important role in optimization for their productivity in a particular cyanobacterium.


Assuntos
Ritmo Circadiano/efeitos da radiação , Fontes Termais/microbiologia , Nostoc/fisiologia , Nostoc/efeitos da radiação , Fotossíntese/efeitos da radiação , Ficobiliproteínas/metabolismo , Raios Ultravioleta , Antioxidantes/metabolismo , Ascorbato Peroxidases/metabolismo , Catalase/metabolismo , Nostoc/enzimologia , Pigmentos Biológicos/metabolismo , Proteínas de Plantas/metabolismo , Espectrometria de Fluorescência , Superóxido Dismutase/metabolismo
17.
3 Biotech ; 7(3): 192, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28664377

RESUMO

Nucleotide and amino acid compositions were studied to determine the genomic and structural relationship of photolyase gene in freshwater, marine and hot spring cyanobacteria. Among three habitats, photolyase encoding genes from hot spring cyanobacteria were found to have highest GC content. The genomic GC content was found to influence the codon usage and amino acid variability in photolyases. The third position of codon was found to have more effect on amino acid variability in photolyases than the first and second positions of codon. The variation of amino acids Ala, Asp, Glu, Gly, His, Leu, Pro, Gln, Arg and Val in photolyases of three different habitats was found to be controlled by first position of codon (G1C1). However, second position (G2C2) of codon regulates variation of Ala, Cys, Gly, Pro, Arg, Ser, Thr and Tyr contents in photolyases. Third position (G3C3) of codon controls incorporation of amino acids such as Ala, Phe, Gly, Leu, Gln, Pro, Arg, Ser, Thr and Tyr in photolyases from three habitats. Photolyase encoding genes of hot spring cyanobacteria have 85% codons with G or C at third position, whereas marine and freshwater cyanobacteria showed 82 and 60% codons, respectively, with G or C at third position. Principal component analysis (PCA) showed that GC content has a profound effect in separating the genes along the first major axis according to their RSCU (relative synonymous codon usage) values, and neutrality analysis indicated that mutational pressure has resulted in codon bias in photolyase genes of cyanobacteria.

18.
Protoplasma ; 252(6): 1551-61, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25772678

RESUMO

The adaptability of cyanobacteria in diverse habitats is an important factor to withstand harsh conditions. In the present investigation, the impacts of photosynthetically active radiation (PAR; 400-700 nm), ultraviolet-B (UV-B; 280-315 nm), and PAR + UV-B radiations on two cyanobacteria viz., Nostoc sp. HKAR-2 and Nostoc sp. HKAR-11 inhabiting diverse habitats such as hot springs and rice fields, respectively, were studied. Cell viability was about 14 % in Nostoc sp. HKAR-2 and <10 % in Nostoc sp. HKAR-11 after 48 h of UV-B exposure. PAR had negligible negative impact on the survival of both cyanobacteria. The continuous exposure of UV-B and PAR + UV-B showed rapid uncoupling, bleaching, fragmentation, and degradation in both phycocyanin (C-PC) and phycoerythrin (C-PE) subunits of phycobiliproteins (PBPs). Remarkable bleaching effect of C-PE and C-PC was not only observed with UV-B or PAR + UV-B radiation, but longer period (24-48 h) of exposure with PAR alone also showed noticeable negative impact. The C-PE and C-PC subunits of the rice field isolate Nostoc sp. HKAR-11 were severely damaged in comparison to the hot spring isolate Nostoc sp. HKAR-2 with rapid wavelength shifting toward shorter wavelengths denoting the bleaching of both the accessory light harvesting pigments. The results indicate that PBPs of the hot spring isolate Nostoc sp. HKAR-2 were more stable under various light regimes in comparison to the rice field isolate Nostoc sp. HKAR-11 that could serve as a good source of valuable pigments to be used in various biomedical and biotechnological applications.


Assuntos
Ecossistema , Nostoc/efeitos da radiação , Fotoperíodo , Fotossíntese/efeitos da radiação , Ficobiliproteínas/metabolismo , Ficobilissomas/efeitos da radiação , Raios Ultravioleta , Fontes Termais/microbiologia , Viabilidade Microbiana/efeitos da radiação , Nostoc/classificação , Nostoc/crescimento & desenvolvimento , Nostoc/metabolismo , Ficobilissomas/metabolismo , Ficocianina/metabolismo , Ficoeritrina/metabolismo , Desnaturação Proteica , Estabilidade Proteica , Microbiologia do Solo , Espectrometria de Fluorescência , Fatores de Tempo , Microbiologia da Água
19.
Gene ; 546(2): 162-71, 2014 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-24933001

RESUMO

The genomic as well as structural relationship of phycobiliproteins (PBPs) in different cyanobacterial species are determined by nucleotides as well as amino acid composition. The genomic GC constituents influence the amino acid variability and codon usage of particular subunit of PBPs. We have analyzed 11 cyanobacterial species to explore the variation of amino acids and causal relationship between GC constituents and codon usage. The study at the first, second and third levels of GC content showed relatively more amino acid variability on the levels of G3+C3 position in comparison to the first and second positions. The amino acid encoded GC rich level including G rich and C rich or both correlate the codon variability and amino acid availability. The fluctuation in amino acids such as Arg, Ala, His, Asp, Gly, Leu and Glu in α and ß subunits was observed at G1C1 position; however, fluctuation in other amino acids such as Ser, Thr, Cys and Trp was observed at G2C2 position. The coding selection pressure of amino acids such as Ala, Thr, Tyr, Asp, Gly, Ile, Leu, Asn, and Ser in α and ß subunits of PBPs was more elaborated at G3C3 position. In this study, we observed that each subunit of PBPs is codon specific for particular amino acid. These results suggest that genomic constraint linked with GC constituents selects the codon for particular amino acids and furthermore, the codon level study may be a novel approach to explore many problems associated with genomics and proteomics of cyanobacteria.


Assuntos
Proteínas de Bactérias/genética , Composição de Bases , Códon/genética , Cianobactérias/genética , Ficobiliproteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA