RESUMO
Primaquine and Tafenoquine are the only approved drugs that can achieve a radical cure for Plasmodium vivax malaria but are contraindicated in patients who are deficient in glucose 6-phosphate dehydrogenase (G6PDd) due to risk of severe hemolysis from reactive oxygen species generated by redox cycling of drug metabolites. 5-hydroxyprimaquine and its quinoneimine cause robust redox cycling in red blood cells (RBCs) but are so labile as to not be detected in blood or urine. Rather, the quinoneimine is rapidly converted into primaquine-5,6-orthoquinone (5,6-POQ) that is then excreted in the urine. The extent to which 5,6-POQ contributes to hemolysis remains unclear, although some have suggested that it is a minor toxin that should be used predominantly as a surrogate to infer levels of 5-hydroxyprimaquine. In this report, we describe a novel humanized mouse model of the G6PD Mediterranean variant (hG6PDMed-) that recapitulates the human biology of RBC age-dependent enzyme decay, as well as an isogenic matched control mouse with human nondeficient G6PD hG6PDND In vitro challenge of RBCs with 5,6-POQ causes increased generation of superoxide and methemoglobin. Infusion of treated RBCs shows that 5,6-POQ selectively causes in vivo clearance of older hG6PDMed- RBCs. These findings support the hypothesis that 5,6-POQ directly induces hemolysis and challenges the notion that 5,6-POQ is an inactive metabolic waste product. Indeed, given the extreme lability of 5-hydroxyprimaquine and the relative stability of 5,6-POQ, these data raise the possibility that 5,6-POQ is a major hemolytic primaquine metabolite in vivo. SIGNIFICANCE STATEMENT: These findings demonstrate that 5,6-POQ, which has been considered an inert waste product of primaquine metabolism, directly induces ROS that cause clearance of older G6PDd RBCs. As 5,6-POQ is relatively stable compared with other active primaquine metabolites, these data support the hypothesis that 5,6-POQ is a major toxin in primaquine induced hemolysis. The findings herein also establish a new model of G6PDd and provide the first direct evidence, to our knowledge, that young G6PDd RBCs are resistant to primaquine-induced hemolysis.
Assuntos
Eritrócitos , Deficiência de Glucosefosfato Desidrogenase , Hemólise , Primaquina , Animais , Hemólise/efeitos dos fármacos , Eritrócitos/metabolismo , Eritrócitos/efeitos dos fármacos , Primaquina/farmacologia , Primaquina/metabolismo , Camundongos , Humanos , Deficiência de Glucosefosfato Desidrogenase/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Modelos Animais de Doenças , Masculino , Antimaláricos/farmacologiaRESUMO
Sensory perturbation in one modality results in the adaptive reorganization of neural pathways within the spared modalities, a phenomenon known as "crossmodal plasticity," which has been examined during or after the classic "critical period." Because peripheral perturbations can alter the auditory cortex (ACX) activity and functional connectivity of the ACX subplate neurons (SPNs) even before the critical period, called the precritical period, we investigated if retinal deprivation at birth crossmodally alters the ACX activity and SPN circuits during the precritical period. We deprived newborn mice of visual inputs after birth by performing bilateral enucleation. We performed in vivo widefield imaging in the ACX of awake pups during the first two postnatal weeks to investigate cortical activity. We found that enucleation alters spontaneous and sound-evoked activities in the ACX in an age-dependent manner. Next, we performed whole-cell patch clamp recording combined with laser scanning photostimulation in ACX slices to investigate circuit changes in SPNs. We found that enucleation alters the intracortical inhibitory circuits impinging on SPNs, shifting the excitation-inhibition balance toward excitation and this shift persists after ear opening. Together, our results indicate that crossmodal functional changes exist in the developing sensory cortices at early ages before the onset of the classic critical period.
Assuntos
Córtex Auditivo , Animais , Camundongos , Córtex Auditivo/fisiologia , Tálamo/fisiologia , Neurônios/fisiologia , Lobo Parietal , Vias Neurais/fisiologiaRESUMO
Cortical layer 1 (L1) contains a diverse population of interneurons that can modulate processing in superficial cortical layers, but the intracortical sources of synaptic input to these neurons and how these inputs change over development and with sensory experience is unknown. We here investigated the changing intracortical connectivity to L1 in the primary auditory cortex (A1) of mice of both sexes in in vitro slices across development using laser-scanning photostimulation. Before postnatal day (P)10, L1 cells receive excitatory input from within L1, L2/3, L4, and L5/6 as well as from subplate. Excitatory inputs from all layers increase, especially from L4, and peak during P10-P16, around the peak of the critical period for tonotopy. Inhibitory inputs followed a similar pattern. Functional circuit diversity in L1 emerges after P16. In adults, L1 neurons receive ascending inputs from L2/3 and L5/6, but only few inputs from L4. The transient hyperconnectivity from deep layers but not L2/3 is absent in deaf mice. Our results demonstrate that deep excitatory and superficial inhibitory circuits are tightly linked in early development and might provide a functional scaffold for the layers in between. These results suggest that early thalamically driven spontaneous and sensory activity in subplate can be relayed to L1 from the earliest ages on and shape L1 connectivity from deep layers. Our results also reveal a period of high transient columnar hyperconnectivity after ear opening coinciding with the critical period, suggesting that circuits originating in deep layers might play a key role in this process.SIGNIFICANCE STATEMENT L1 contains a diverse population of interneurons that can modulate processing in superficial cortical layers but the sources of synaptic input to these neurons and how these inputs change over development is unknown. We found that during the critical period a large fraction of excitatory inputs to L1 originated in L5/6 and the cortical subplate. This hyperconnectivity is absent in deaf mice. Our results directly demonstrate that deep excitatory and superficial inhibitory circuits are tightly linked in early development and might provide a functional scaffold for the layers in between.
Assuntos
Período Crítico Psicológico , Neurônios , Animais , Feminino , Interneurônios/fisiologia , Masculino , Camundongos , Neurônios/fisiologiaRESUMO
Opioid use by pregnant women results in neonatal opioid withdrawal syndrome (NOWS) and lifelong neurobehavioral deficits including language impairments. Animal models of NOWS show impaired performance in a two-tone auditory discrimination task, suggesting abnormalities in sensory processing in the auditory cortex. To investigate the consequences of perinatal opioid exposure on auditory cortex circuits, we administered fentanyl to mouse dams in their drinking water throughout gestation and until litters were weaned at postnatal day (P)21. We then used in vivo two-photon Ca2+ imaging in adult animals of both sexes to investigate how primary auditory cortex (A1) function was altered. Perinatally exposed animals showed fewer sound-responsive neurons in A1, and the remaining sound-responsive cells exhibited lower response amplitudes but normal frequency selectivity and stimulus-specific adaptation (SSA). Populations of nearby layer 2/3 (L2/3) cells in exposed animals showed reduced correlated activity, suggesting a reduction of shared inputs. We then investigated A1 microcircuits to L2/3 cells by performing laser-scanning photostimulation (LSPS) combined with whole-cell patch-clamp recordings from A1 L2/3 cells. L2/3 cells in exposed animals showed functional hypoconnectivity of excitatory circuits of ascending inputs from L4 and L5/6 to L2/3, while inhibitory connections were unchanged, leading to an altered excitatory/inhibitory balance. These results suggest a specific reduction in excitatory ascending interlaminar cortical circuits resulting in decreased activity correlations after fentanyl exposure. We speculate that these changes in cortical circuits contribute to the impaired auditory discrimination ability after perinatal opioid exposure.SIGNIFICANCE STATEMENT This is the first study to investigate the functional effects of perinatal fentanyl exposure on the auditory cortex. Experiments show that perinatal fentanyl exposure results in decreased excitatory functional circuits and altered population activity in primary sensory areas in adult mice. These circuit changes might underlie the observed language and cognitive deficits in infants exposed to opioids.
Assuntos
Córtex Auditivo , Analgésicos Opioides/farmacologia , Animais , Córtex Auditivo/fisiologia , Feminino , Fentanila/farmacologia , Humanos , Masculino , Camundongos , Neurônios/fisiologia , Técnicas de Patch-Clamp , GravidezRESUMO
In quiescent cells, mitochondria are the primary source of reactive oxygen species (ROS), which are generated by leakiness of the electron transport chain (ETC). High levels of ROS can trigger cell death, whereas lower levels drive diverse and important cellular functions. We show here by employing a newly developed mitochondrial matrix-targeted superoxide indicator, that individual mitochondria undergo spontaneous bursts of superoxide generation, termed "superoxide flashes." Superoxide flashes occur randomly in space and time, exhibit all-or-none properties, and provide a vital source of superoxide production across many different cell types. Individual flashes are triggered by transient openings of the mitochondrial permeability transition pore stimulating superoxide production by the ETC. Furthermore, we observe a flurry of superoxide flash activity during reoxygenation of cardiomyocytes after hypoxia, which is inhibited by the cardioprotective compound adenosine. We propose that superoxide flashes could serve as a valuable biomarker for a wide variety of oxidative stress-related diseases.
Assuntos
Mitocôndrias/metabolismo , Superóxidos/metabolismo , Adenoviridae/genética , Animais , Hipóxia Celular , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Proteínas Luminescentes/metabolismo , Células Musculares/metabolismo , Miócitos Cardíacos/metabolismo , Neurônios/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismoRESUMO
Sensory deprivation from the periphery impacts cortical development. Otoferlin deficiency leads to impaired cochlear synaptic transmission and is associated with progressive hearing loss in adults. However, it remains elusive how sensory deprivation due to otoferlin deficiency impacts the early development of the auditory cortex (ACX) especially before the onset of low threshold hearing. To test that, we performed in vivo imaging of the ACX in awake mice lacking otoferlin (Otof-/-) during the first and second postnatal weeks and found that spontaneous and sound-driven cortical activity were progressively impaired. We then characterized the effects on developing auditory cortical circuits by performing in vitro recordings from subplate neurons (SPN), the first primary targets of thalamocortical inputs. We found that in Otof-/- pups, SPNs received exuberant connections from excitatory and inhibitory neurons. Moreover, as a population, SPNs showed higher similarity with respect to their circuit topology in the absence of otoferlin. Together, our results show that otoferlin deficiency results in impaired hearing and has a powerful influence on cortical connections and spontaneous activity in early development even before complete deafness. Therefore, peripheral activity has the potential to sculpt cortical structures from the earliest ages, even before hearing impairment is diagnosed.
Assuntos
Córtex Auditivo , Proteínas de Membrana , Animais , Córtex Auditivo/fisiologia , Audição , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Neurônios/fisiologia , Transmissão SinápticaRESUMO
The connection between early brain injury and subsequent development of disorders is unknown. Neonatal hypoxia-ischemia (HI) alters circuits associated with subplate neurons (SPNs). SPNs are among the first maturing cortical neurons, project to thalamorecipient layer 4 (L4), and are required for the development of thalamocortical connections. Thus, early HI might influence L4 and such influence might persist. We investigated functional circuits to L4 neurons in neonatal rat HI models of different severities (mild and moderate) shortly after injury and at adolescence. We used laser-scanning photostimulation in slices of auditory cortex during P5-10 and P18-23. Mild injuries did not initially (P6/P7) alter the convergence of excitatory inputs from L2/3, but hyperconnectivity emerged by P8-10. Inputs from L4 showed initial hypoconnectivity which resolved by P8-10. Moderate injuries resulted in initial hypoconnectivity from both layers which resolved by P8-10 and led to persistent strengthening of connections. Inhibitory inputs to L4 cells showed similar changes. Functional changes were mirrored by reduced dendritic complexity. We also observed a persistent increase in similarity of L4 circuits, suggesting that HI interferes with developmental circuit refinement and diversification. Altogether, our results show that neonatal HI injuries lead to persistent changes in intracortical connections.
Assuntos
Córtex Auditivo , Animais , Córtex Auditivo/fisiologia , Hipóxia , Isquemia , Neurônios/fisiologia , Ratos , Tálamo/fisiologiaRESUMO
During the critical period, neuronal connections are shaped by sensory experience. While the basis for this temporarily heightened plasticity remains unclear, shared connections introducing activity correlations likely play a key role. Thus, we investigated the changing intracortical connectivity in primary auditory cortex (A1) over development. In adult, layer 2/3 (L2/3) neurons receive ascending inputs from layer 4 (L4) and also receive few inputs from subgranular layer 5/6 (L5/6). We measured the spatial pattern of intracortical excitatory and inhibitory connections to L2/3 neurons in slices of mouse A1 across development using laser-scanning photostimulation. Before P11, L2/3 cells receive most excitatory input from within L2/3. Excitatory inputs from L2/3 and L4 increase after P5 and peak during P9-16. L5/6 inputs increase after P5 and provide most input during P12-16, the peak of the critical period. Inhibitory inputs followed a similar pattern. Functional circuit diversity in L2/3 emerges after P16. In vivo two-photon imaging shows low pairwise signal correlations in neighboring neurons before P11, which peak at P15-16 and decline after. Our results suggest that the critical period is characterized by high pairwise activity correlations and that transient hyperconnectivity of specific circuits, in particular those originating in L5/6, might play a key role.
Assuntos
Córtex Auditivo/fisiologia , Interneurônios/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Animais , Mapeamento Encefálico/métodos , Período Crítico Psicológico , Camundongos , Técnicas de Patch-Clamp/métodosRESUMO
Neonatal hypoxia-ischemia (HI) in the preterm human results in damage to subcortical developing white matter and cognitive impairments. Subplate neurons (SPNs) are among the first-born cortical neurons and are necessary for normal cerebral development. While moderate or severe HI at P1 in rats leads to SPN loss, it is unclear if HI, esp. forms not associated with overt cell loss lead to altered SPN circuits. Thus, we used two HI models with different severities in P1 rats. Cauterization of the common carotid artery (CCA) causes a largely transient and thus milder ischemia (HI-Caut) while CCA ligation causes more severe ischemia (HI-Lig). While HI-Lig caused subplate damage, HI-Caut did not cause overt histological damage on the light microscopic level. We used laser-scanning photostimulation (LSPS) in acute thalamocortical slices of auditory cortex during P5-10 to study the functional connectivity of SPNs. Both HI categories resulted in hyperconnectivity of excitatory and inhibitory circuits to SPNs. Thus, alterations on the circuit level are present in the absence of cell loss. Our results show that SPN circuits are uniquely susceptible to HI. Given the key developmental role of SPNs, our results suggest that altered SPN circuits might underlie the abnormal development of cortical function after HI.
Assuntos
Córtex Auditivo/fisiologia , Hipóxia-Isquemia Encefálica/fisiopatologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Tálamo/fisiologia , Animais , Animais Recém-Nascidos , Córtex Auditivo/patologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Hipóxia-Isquemia Encefálica/patologia , Masculino , Rede Nervosa/patologia , Neurônios/patologia , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Tálamo/patologiaRESUMO
Single-cell metabolic investigations are hampered by the absence of flexible tools to measure local partial pressure of O2 (pO2) at high spatial-temporal resolution. To this end, we developed an optical sensor capable of measuring local pericellular pO2 for subcellular resolution measurements with confocal imaging while simultaneously carrying out electrophysiological and/or chemo-mechanical single cell experiments. Here we present the OxySplot optrode, a ratiometric fluorescent O2-micro-sensor created by adsorbing O2-sensitive and O2-insensitive fluorophores onto micro-particles of silica. To protect the OxySplot optrode from the components and reactants of liquid environment without compromising access to O2, the micro-particles are coated with an optically clear silicone polymer (PDMS, polydimethylsiloxane). The PDMS coated OxySplot micro-particles are used alone or in a thin (~50⯵m) PDMS layer of arbitrary shape referred to as the OxyMat. Additional top coatings on the OxyMat (e.g., fibronectin, laminin, polylysine, special photoactivatable surfaces etc.) facilitate adherence of cells. The OxySplots report the cellular pO2 and micro-gradients of pO2 without disrupting the flow of extracellular solutions or interfering with patch-clamp pipettes, mechanical attachments, and micro-superfusion. Since OxySplots and a cell can be imaged and spatially resolved, calibrated changes of pO2 and intracellular events can be imaged simultaneously. In addition, the response-time (t0.5â¯=â¯0.7â¯s, 0-160â¯mmHg) of OxySplots is ~100 times faster than amperometric Clark-type polarization microelectrodes. Two usage example of OxySplots with cardiomyocytes show (1) OxySplots measuring pericellular pO2 while tetramethylrhodamine methyl-ester (TMRM) was used to measure mitochondrial membrane potential (ΔΨm); and (2) OxySplots measuring pO2 during ischemia and reperfusion while rhod-2 was used to measure cytosolic [Ca2+]i levels simultaneously. The OxySplot/OxyMat optrode system provides an affordable and highly adaptable optical sensor system for monitoring pO2 with a diverse array of imaging systems, including high-speed, high-resolution confocal microscopes while physiological features are measured simultaneously.
Assuntos
Imagem Molecular/métodos , Oxigênio/metabolismo , Animais , Calibragem , Potencial da Membrana Mitocondrial , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Coelhos , RatosRESUMO
The cerebral cortex is subdivided into six layers based on morphological features. The supragranular layers 2/3 (L2/3) contain morphologically and genetically diverse populations of neurons, suggesting the existence of discrete classes of cells. In primates and carnivores L2/3 can be subdivided morphologically, but cytoarchitectonic divisions are less clear in rodents. Nevertheless, discrete classes of cells could exist based on their computational requirement, which might be linked to their associated functional microcircuits. Through in vitro slice recordings coupled with laser-scanning photostimulation we investigated whether L2/3 of male mouse auditory cortex contains discrete subpopulations of cells with specific functional microcircuits. We use hierarchical clustering on the laminar connection patterns to reveal the existence of multiple distinct classes of L2/3 neurons. The classes of L2/3 neurons are distinguished by the pattern of their laminar and columnar inputs from within A1 and their location within L2/3. Cells in superficial L2 show more extensive columnar integration than deeper L3 cells. Moreover, L3 cells receive more translaminar input from L4. In vivo imaging in awake mice revealed that L2 cells had higher bandwidth than L3 cells, consistent with the laminar differences in columnar integration. These results suggest that similar to higher mammals, rodent L2/3 is not a homogenous layer but contains several parallel microcircuits.SIGNIFICANCE STATEMENT Layer 2/3 of auditory cortex is functionally diverse. We investigated whether L2/3 cells form classes based on their functional connectivity. We used in vitro whole-cell patch-clamp recordings with laser-scanning photostimulation and performed unsupervised clustering on the resulting excitatory and inhibitory connection patterns. Cells within each class were located in different sublaminae. Superficial cells showed wider integration along the tonotopic axis and the amount of L4 input varied with sublaminar location. To identify whether sensory responses varied with sublaminar location, we performed in vivo Ca2+ imaging and found that L2 cells were less frequency-selective than L3 cells. Our results show that the diversity of receptive fields in L2/3 is likely due to diversity in the underlying functional circuits.
Assuntos
Estimulação Acústica/métodos , Córtex Auditivo/fisiologia , Rede Nervosa/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de ÓrgãosRESUMO
Many macroscopic properties such as collective chiral responses enhanced by coupled plasmonic nanoparticles require complex nanostructures. However, a key challenge is to directly assemble nanosized building blocks into functional entities with designed morphologies. For example, the DNA templated nanoparticle assembly has low scalability and requires aqueous conditions, while other approaches such as controlled drying and polymer templating access only simple 1-D, 2-D, and 3-D structures with limited assembly patterns. Here, we demonstrate a new self-assembly strategy that expands the diversity of 3-D nanoparticle assemblies. By subjecting supramolecular nanocomposites to cylindrical confinement, a range of new nanoparticle assemblies such as stacked rings and single and double helices can be readily obtained with a precisely defined morphology. Circular dichroism dark field scattering measurements on the single nanowire with Au helical ribbon-like assembly show chiral plasmonic response several orders of magnitude higher than that of natural chiral materials. The phase behavior of supramolecular nanocomposite under geometric constraints is quite different from that of block copolymer. It depends on the complex interplay among nanoparticle packing and phase behavior of parent block copolymers under confinement and can be governed by nanoparticle diffusion.
RESUMO
Lithium carbonate, a drug for the treatment of bipolar disorder, provides mood stability to mitigate recurrent episodes of mania and/or depression. Despite its long-term and widespread use, the mechanism by which lithium acts to elicit these psychological changes has remained unknown. Using nuclear magnetic resonance (NMR) methods, in this study we characterized the association of lithium with adenosine triphosphate (ATP) and identified a bimetallic (Mg·Li) ATP complex. Lithium's affinity to form this complex was found to be relatively high (Kd â¼1.6 mM) compared with other monovalent cations and relevant, considering lithium dosing and physiological concentrations of Mg(2+) and ATP. The ATP·Mg·Li complex reveals, for the first time, to the best of our knowledge, that lithium can associate with magnesium-bound phosphate sites and then act to modulate purine receptor activity in neuronal cells, suggesting a molecular mode for in vivo lithium action.
Assuntos
Lítio/metabolismo , Lítio/farmacologia , Modelos Moleculares , Trifosfato de Adenosina/metabolismo , Lítio/química , Magnésio/metabolismo , Espectroscopia de Ressonância MagnéticaRESUMO
The covalent attachment of a 14-carbon aliphatic tail on a glycine residue of nascent translated peptide chains is catalyzed in human cells by two N-myristoyltransferase (NMT) enzymes using the rare myristoyl-CoA (C(14)-CoA) molecule as fatty acid donor. Although, NMT enzymes can only transfer a myristate group, they lack specificity for C(14)-CoA and can also bind the far more abundant palmitoyl-CoA (C(16)-CoA) molecule. We determined that the acyl-CoA binding protein, acyl-CoA binding domain (ACBD)6, stimulated the NMT reaction of NMT2. This stimulatory effect required interaction between ACBD6 and NMT2, and was enhanced by binding of ACBD6 to its ligand, C(18:2)-CoA. ACBD6 also interacted with the second human NMT enzyme, NMT1. The presence of ACBD6 prevented competition of the NMT reaction by C(16)-CoA. Mutants of ACBD6 that were either deficient in ligand binding to the N-terminal ACBD or unable to interact with NMT2 did not stimulate activity of NMT2, nor could they protect the enzyme from utilizing the competitor C(16)-CoA. These results indicate that ACBD6 can locally sequester C(16)-CoA and prevent its access to the enzyme binding site via interaction with NMT2. Thus, the ligand binding properties of the NMT/ACBD6 complex can explain how the NMT reaction can proceed in the presence of the very abundant competitive substrate, C(16)-CoA.
Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Acil Coenzima A/metabolismo , Aciltransferases/metabolismo , Lipídeos de Membrana/metabolismo , Ácido Mirístico/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Acilação , Aciltransferases/química , Proteínas de Transporte , Coenzima A/metabolismo , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Humanos , Lipídeos de Membrana/química , Palmitoil Coenzima A/metabolismo , Fosfolipídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas/genética , Especificidade por SubstratoRESUMO
Protease-activated receptors (PARs) are a family of seven-transmembrane, G-protein-coupled receptors that are activated by multiple serine proteases through specific N-terminal proteolytic cleavage and the unmasking of a tethered ligand. The majority of PAR-activating proteases described to date are soluble proteases that are active during injury, coagulation, and inflammation. Less investigation, however, has focused on the potential for membrane-anchored serine proteases to regulate PAR activation. Testisin is a unique trypsin-like serine protease that is tethered to the extracellular membrane of cells through a glycophosphatidylinositol (GPI) anchor. Here, we show that the N-terminal domain of PAR-2 is a substrate for testisin and that proteolytic cleavage of PAR-2 by recombinant testisin activates downstream signaling pathways, including intracellular Ca(2+) mobilization and ERK1/2 phosphorylation. When testisin and PAR-2 are co-expressed in HeLa cells, GPI-anchored testisin specifically releases the PAR-2 tethered ligand. Conversely, knockdown of endogenous testisin in NCI/ADR-Res ovarian tumor cells reduces PAR-2 N-terminal proteolytic cleavage. The cleavage of PAR-2 by testisin induces activation of the intracellular serum-response element and NFκB signaling pathways and the induction of IL-8 and IL-6 cytokine gene expression. Furthermore, the activation of PAR-2 by testisin results in the loss and internalization of PAR-2 from the cell surface. This study reveals a new biological substrate for testisin and is the first demonstration of the activation of a PAR by a serine protease GPI-linked to the cell surface.
Assuntos
Proteólise , Receptor PAR-2/metabolismo , Serina Endopeptidases/metabolismo , Sinalização do Cálcio , Membrana Celular/metabolismo , Proteínas Ligadas por GPI/metabolismo , Células HEK293 , Células HeLa , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Sistema de Sinalização das MAP Quinases , NF-kappa B/metabolismo , Receptor PAR-2/química , Elementos de RespostaRESUMO
Targeted delivery of molecular probes into cells enables cellular imaging through optical and magnetic modalities. Probe molecules that are well retained by cells can accumulate to higher intracellular concentrations, and thus increase the signal-to-noise ratio of, and widen the temporal window for, imaging. Here we synthesize a paramagnetic spin probe bearing six ionic functional groups and show that it has long intracellular half-life (>12 h) and exceptional biostability in living cells. We demonstrate that judicious incorporation of ionic substituents on probe molecules systematically increases intracellular retention time, and should therefore be beneficial to imaging experiments.
Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Sondas Moleculares/química , Sondas Moleculares/farmacocinética , Técnicas de Química Sintética , Meia-Vida , Humanos , Células Jurkat , Óxidos de Nitrogênio/química , Marcadores de SpinRESUMO
Subplate neurons (SPNs) form one of the earliest maturing circuits in the cerebral cortex and are crucial to cortical development. In addition to thalamic inputs, subsets of SPNs receive excitatory AMPAR-mediated inputs from the developing cortical plate in the second postnatal week. Functionally silent (non-AMPAR-mediated) excitatory synapses exist in several systems during development, and the existence of such inputs can precede the appearance of AMPAR-mediated synapses. Because SPNs receive inputs from presynaptic cells in different cortical layers, we investigated whether AMPAR-mediated and silent synapses might originate in different layers. We used laser-scanning photostimulation in acute thalamocortical slices of mouse auditory cortex during the first 2 postnatal weeks to study the spatial origin of silent synapses onto SPNs. We find that silent synapses from the cortical plate are present on SPNs and that they originate from different cortical locations than functional (AMPAR-mediated) synapses. Moreover, we find that SPNs can be categorized based on the spatial pattern of silent and AMPAR-mediated connections. Because SPNs can be activated at young ages by thalamic inputs, distinct populations of cortical neurons at young ages have the ability to signal to SPNs depending on the activation state of SPNs. Because during development intracortical circuits are spontaneously active, our results suggest that SPNs might integrate ascending input from the thalamus with spontaneously generated cortical activity patterns. Together, our results suggest that SPNs are an integral part of the developing intracortical circuitry and thereby can sculpt thalamocortical connections.
Assuntos
Córtex Auditivo/fisiologia , Vias Auditivas/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Tálamo/fisiologia , Animais , Córtex Auditivo/citologia , Córtex Auditivo/crescimento & desenvolvimento , Vias Auditivas/citologia , Vias Auditivas/crescimento & desenvolvimento , Axônios/fisiologia , Camundongos , Neurônios/citologia , Tálamo/citologia , Tálamo/crescimento & desenvolvimentoRESUMO
Intracellular thiol-disulfide redox balance is crucial to cell health, and may be a key determinant of a cancer's response to chemotherapy and radiation therapy. The ability to assess intracellular thiol-disulfide balance may thus be useful not only in predicting responsiveness of cancers to therapy, but in assessing predisposition to disease. Assays of thiols in biology have relied on colorimetry or fluorimetry, both of which require UV-visible photons, which do not penetrate the body. Low-frequency electron paramagnetic resonance imaging (EPRI) is an emerging magnetic imaging technique that uses radio waves, which penetrate the body well. Therefore, in combination with tailored imaging agents, EPRI affords the opportunity to image physiology within the body. In this study, we have prepared water-soluble and membrane-permeant disulfide-linked dinitroxides, at natural isotopic abundance, and with D,(15)N-substitution. Thiols such as glutathione cleave the disulfides, with simple bimolecular kinetics, to yield the monomeric nitroxide species, with distinctive changes in the EPR spectrum. Using the D,(15)N-substituted disulfide-dinitroxide and EPR spectroscopy, we have obtained quantitative estimates of accessible intracellular thiol in cultured human lymphocytes. Our estimates are in good agreement with published measurements. This suggests that in vivo EPRI of thiol-disulfide balance is feasible. Finally, we discuss the constraints on the design of probe molecules that would be useful for in vivo EPRI of thiol redox status.
Assuntos
Dissulfetos/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Óxidos de Nitrogênio/química , Compostos de Sulfidrila/análise , Linfócitos T/química , Ditiotreitol/análise , Glutationa/análise , Humanos , Células Jurkat , OxirreduçãoRESUMO
The phase behavior of supramolecular nanocomposite thin films was systematically investigated as a function of nanoparticle (NP) loading from 1 to >50 wt %. The coassembly of NP and supramolecule can be divided into five regimes, from a supramolecule-guided assembly to a NP governing assembly process, depending on the energetic contributions from the surface energy, NP-supramolecule interaction, and the kinetic pathway of the assembly process. A range of morphologies such as 1D NP chains, 2D sheets, 3D NP assemblies, and NP solids can be readily obtained, providing opportunities to meet structural control in nanocomposites for a wide range of applications.
RESUMO
Radicals, including hydroxyl, superoxide, and nitric oxide, play key signaling roles in vivo. Reaction of these free radicals with a spin trap affords more stable paramagnetic nitroxides, but concentrations in vivo still are so low that detection by electron paramagnetic resonance (EPR) is challenging. Three innovative enabling technologies have been combined to substantially improve sensitivity for imaging spin-trapped radicals at 250 MHz. 1) Spin-trapped adducts of BMPO have lifetimes that are long enough to make imaging by EPR at 250 MHz feasible. 2) The signal-to-noise ratio of rapid-scan EPR is substantially higher than for conventional continuous-wave EPR. 3) An improved algorithm permits image reconstruction with a spectral dimension that encompasses the full 50 G spectrum of the BMPO-OH spin adduct without requiring the wide sweeps that would be needed for filtered backprojection. A 2D spectral-spatial image is shown for a phantom containing ca. 5 µM BMPO-OH.