Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Analyst ; 149(1): 63-75, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37933547

RESUMO

Surface-enhanced Raman Spectroscopy (SERS) is a powerful optical sensing technique that amplifies the signal generated by Raman scattering by many orders of magnitude. Although the extreme sensitivity of SERS enables an extremely low limit of detection, even down to single molecule levels, it is also a primary limitation of the technique due to its tendency to equally amplify 'noise' generated by non-specifically adsorbed molecules at (or near) SERS-active interfaces. Eliminating interference noise is thus critically important to SERS biosensing and typically involves onerous extraction/purification/washing procedures and/or heavy dilution of biofluid samples. Consequently, direct analysis within biofluid samples or in vivo environments is practically impossible. In this study, an anti-fouling coating of recombinant human Lubricin (LUB) was self-assembled onto AuNP-modified glass slides via a simple drop-casting method. A series of Raman spectra were collected using rhodamine 6G (R6G) as a model analyte, which was spiked into NaCl solution or unprocessed whole blood. Likewise, we demonstrate the same sensing system for the quantitative detection of L-cysteine spiked in undiluted milk. It was demonstrated for the first time that LUB coating can mitigate the deleterious effect of fouling in a SERS sensor without compromising the detection of a target analyte, even in a highly fouling, complex medium like whole blood or milk. This feat is achieved through a molecular sieving property of LUB that separates small analytes from large fouling species directly at the sensing interface resulting in SERS spectra with low background (i.e., noise) levels and excellent analyte spectral fidelity. These findings indicate the great potential for using LUB coatings together with an analyte-selective layer to form a hierarchical separation system for SERS sensing of relevant analytes directly in complex biological media, aquaculture, food matrix or environmental samples.


Assuntos
Incrustação Biológica , Técnicas Biossensoriais , Humanos , Análise Espectral Raman/métodos , Técnicas Biossensoriais/métodos , Incrustação Biológica/prevenção & controle , Glicoproteínas
2.
Biochem Soc Trans ; 50(4): 1207-1224, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35997111

RESUMO

CDKL5 deficiency disorder (CDD) is an X-linked brain disorder of young children and is caused by pathogenic variants in the cyclin-dependent kinase-like 5 (CDKL5) gene. Individuals with CDD suffer infantile onset, drug-resistant seizures, severe neurodevelopmental impairment and profound lifelong disability. The CDKL5 protein is a kinase that regulates key phosphorylation events vital to the development of the complex neuronal network of the brain. Pathogenic variants identified in patients may either result in loss of CDKL5 catalytic activity or are hypomorphic leading to partial loss of function. Whilst the progressive nature of CDD provides an excellent opportunity for disease intervention, we cannot develop effective therapeutics without in-depth knowledge of CDKL5 function in human neurons. In this mini review, we summarize new findings on the function of CDKL5. These include CDKL5 phosphorylation targets and the consequence of disruptions on signaling pathways in the human brain. This new knowledge of CDKL5 biology may be leveraged to advance targeted drug discovery and rapid development of treatments for CDD. Continued development of effective humanized models will further propel our understanding of CDD biology and may permit the development and testing of therapies that will significantly alter CDD disease trajectory in young children.


Assuntos
Síndromes Epilépticas , Espasmos Infantis , Criança , Pré-Escolar , Síndromes Epilépticas/tratamento farmacológico , Síndromes Epilépticas/terapia , Humanos , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases/genética , Espasmos Infantis/tratamento farmacológico , Espasmos Infantis/genética , Virulência
3.
Langmuir ; 38(18): 5351-5360, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35465662

RESUMO

There are numerous biomedical applications where the interfacial shearing of surfaces can cause wear and friction, which can lead to a variety of medical complications such as inflammation, irritation, and even bacterial infection. We introduce a novel nanomaterial additive comprised of two-dimensional graphene oxide nanosheets (2D-NSCs) coated with lubricin (LUB) to reduce the amount of tribological stress in biomedical settings, particularly at low shear rates where boundary lubrication dominates. LUB is a glycoprotein found in the articular joints of mammals and has recently been discovered as an ocular surface boundary lubricant. The ability of LUB to self-assemble into a "telechelic" brush layer on a variety of surfaces was exploited here to coat the top and bottom surfaces of the ultrathin 2D-NSCs in solution, effectively creating a biopolymer-coated nanosheet. A reduction in friction of almost an order of magnitude was measured at a bioinspired interface. This reduction was maintained after repeated washing (5×), suggesting that the large aspect ratio of the 2D-NSCs facilitates effective lubrication even at diluted concentrations. Importantly, and unlike LUB-only treatment, the lubrication effect can be eliminated over 15 rinsing cycles, suggesting that the LUB-coated 2D-NSCs do not exhibit any binding interactions with the shearing surfaces. The effective lubricating properties of the 2D-NSCs combined with full reversibility through rinsing make the LUB-coated 2D-NSCs an intriguing candidate as a lubricant for biomedical applications.


Assuntos
Glicoproteínas , Lubrificantes , Animais , Fricção , Glicoproteínas/química , Grafite , Lubrificação , Mamíferos
4.
Langmuir ; 37(37): 11188-11193, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34506141

RESUMO

Self-assembled lubricin (LUB) monolayers are an effective antiadhesive coating for biomedical applications. Long deposition times and limited control over the monolayer grafting density remain impediments to commercialization and applications in advanced sensor technologies. This work describes a novel potential pulse-facilitated coating method that reduces coating times to mere seconds while also providing high-level control over the achieved grafting density. This is the first time that the potential pulse-facilitated method is applied for direct assembling of a large and complex polyelectrolyte.


Assuntos
Glicoproteínas , Polímeros , Adsorção , Polieletrólitos
5.
Langmuir ; 35(48): 15834-15848, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31355643

RESUMO

Lubricin (LUB, aka PRG4), a mucin-like glycoprotein, is best known for the significant role it plays in the boundary lubrication, wear protection, and adhesion control systems in human joints. However, LUB exhibits a number of diverse and useful properties, including a remarkable ability to self-assemble into a telechelic brush structure onto virtually any substrate. This self-assembly behavior has spawned the emergence of numerous nontraditional applications of LUB coatings in numerous areas such as microfluidics, electrochemical sensors, contact lenses, antifouling surfaces, and bionic neural interfaces. Although LUB will readily self-assemble on most substrates, it has become apparent that the substrate has a significant influence on the LUB layer's demonstrated lubrication, antiadhesion, electrokinetic, and size-selective transport properties; however, investigations into LUB-substrate interactions and how they influence the self-assembled LUB layer structure remain a neglected aspect of LUB research. This study utilizes AFM force spectroscopy to directly assess the adhesion energy of LUB molecules adsorbed to a wide variety of different substrates which include inorganic, polymeric, and metallic materials. An analysis of the steric repulsive forces measured on approach provides a qualitative assessment of the LUB layer's mechanical modulus, related to the chain packing density, across substrates. These modulus measurements, combined with characteristic features and the dwell time dependence of the LUB adhesion forces provide insight into the organization and uniformity of the LUB brush structure. The results of these measurements indicate that LUB interactions with different substrates are highly variable and substrate-specific, resulting in a surprisingly broad spectrum of adhesion energies and layer properties (i.e., chain density, uniformity, etc.) which are not, themselves, correlated or easily predicted by substrate properties. In addition, this study finds exceptionally poor LUB adhesion to both mica and poly(methyl methacrylate) surfaces that remain widely used substrates for constructing model surfaces in fundamental tribology studies which may have significant implications for the findings of a number of foundational studies into LUB tribology and molecular synergies.

6.
J Mater Sci Mater Med ; 28(11): 172, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28956202

RESUMO

Trilayered polypyrrole (PPy) actuators have high stress density, low modulus and have wide potential biological applications including use in artificial muscles and in limb prosthesis after limb amputation. This article examines the in vivo biocompatibility of actuators in muscle using rabbit models. The actuators were specially designed with pores to encourage tissue in growth; this study also assessed the effect of such pores on the stability of the actuators in vivo. Trilayered PPy actuators were either laser cut with 150 µm pores or left pore-less and implanted into rabbit muscle for 3 days, 2 weeks, 4 weeks and 8 weeks and retrieved subsequently for histological analysis. In a second set of experiments, the cut edges of pores in porous actuator strips were further sealed by PPy after laser cutting to further improve its stability in vivo. Porous actuators with and without PPy sealing of pore edges were implanted intramuscularly for 4 and 8 weeks and assessed with histology. Pore-less actuators incited a mild inflammatory response, becoming progressively walled off by a thin layer of fibrous tissue. Porous actuators showed increased PPy fragmentation and delamination with associated greater foreign body response compared to pore-less actuators. The PPy fragmentation was minimized when the pore edges were sealed off by PPy after laser cutting showing less PPy debris. Laser cutting of the actuators with pores destabilizes the PPy. This can be overcome by sealing the cut edges of the pores with PPy after laser. The findings in this article have implications in future design and manufacturing of PPy actuator for use in vivo.


Assuntos
Membros Artificiais , Materiais Biocompatíveis/química , Materiais Revestidos Biocompatíveis/química , Polímeros/química , Próteses e Implantes , Pirróis/química , Amputação Cirúrgica/reabilitação , Animais , Materiais Revestidos Biocompatíveis/síntese química , Materiais Revestidos Biocompatíveis/farmacologia , Teste de Materiais , Polímeros/farmacologia , Porosidade , Implantação de Prótese , Pirróis/farmacologia , Coelhos
7.
Anal Chem ; 87(1): 738-46, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25495574

RESUMO

Neural stimulation is used in the cochlear implant, bionic eye, and deep brain stimulation, which involves implantation of an array of electrodes into a patient's brain. The current passed through the electrodes is used to provide sensory queues or reduce symptoms associated with movement disorders and increasingly for psychological and pain therapies. Poor control of electrode properties can lead to suboptimal performance; however, there are currently no standard methods to assess them, including the electrode area and charge density. Here we demonstrate optical and electrochemical methods for measuring these electrode properties and show the charge density is dependent on electrode geometry. This technique highlights that materials can have widely different charge densities but also large variation in performance. Measurement of charge density from an electroactive area may result in new materials and electrode geometries that improve patient outcomes and reduce side effects.


Assuntos
Encéfalo/fisiologia , Estimulação Elétrica , Técnicas Eletroquímicas/métodos , Eletrodos , Polímeros/química , Humanos
8.
Analyst ; 140(9): 3164-74, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25773879

RESUMO

Electrode impedance is used to assess the thermal noise and signal-to-noise ratio for brain-machine interfaces. An intermediate frequency of 1 kHz is typically measured, although other frequencies may be better predictors of device performance. PEDOT-PSS, PEDOT-DBSA and PEDOT-pTs conducting polymer modified electrodes have reduced impedance at 1 kHz compared to bare metal electrodes, but have no correlation with the effective electrode area. Analytical solutions to impedance indicate that all low-intermediate frequencies can be used to compare the electrode area at a series RC circuit, typical of an ideal metal electrode in a conductive solution. More complex equivalent circuits can be used for the modified electrodes, with a simplified Randles circuit applied to PEDOT-PSS and PEDOT-pTs and a Randles circuit including a Warburg impedance element for PEDOT-DBSA at 0 V. The impedance and phase angle at low frequencies using both equivalent circuit models is dependent on the electrode area. Low frequencies may therefore provide better predictions of the thermal noise and signal-to-noise ratio at modified electrodes. The coefficient of variation of the PEDOT-pTs impedance at low frequencies was lower than the other conducting polymers, consistent with linear and steady-state electroactive area measurements. There are poor correlations between the impedance and the charge density as they are not ideal metal electrodes.


Assuntos
Interfaces Cérebro-Computador , Dextranos/química , Poliestirenos/química , Sulfonamidas/química , Tiofenos/química , Espectroscopia Dielétrica , Impedância Elétrica , Eletrodos , Humanos
9.
Colloids Surf B Biointerfaces ; 234: 113741, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184943

RESUMO

Cartilage demineralisation in Osteoarthritis (OA) patients can elevate calcium ion levels in synovial fluid, as evidenced by the prevalence of precipitated calcium phosphate crystals in OA synovial fluid. Although it has been reported that there is a potential connection between elevated concentrations of calcium ions and a deterioration in the lubrication and wear resistance of cartilage tissues, the mechanism behind the strong link between calcium ion concentration and decreased lubrication performance is unclear. In this work, the AFM friction, imaging, and normal force distance measurements were used to investigate the lubrication performances of hyaluronic acid (HA), Lubricin (LUB), and HA-LUB complex in the presence of calcium ions (5 mM, 15 mM, and 30 mM), to understand the possible mechanism behind the change of lubrication property. The results of AFM friction measurements suggest that introducing calcium ions to the environment effectively eliminated the lubrication ability of HA and HA-LUB, especially with relatively low loading applied. The AFM images indicate that it is unlikely that structural or morphological changes in the surface-bound layer upon calcium ions addition are primarily responsible for the friction results demonstrated. Further, the poor correlation between the effect of calcium ions on the adhesion forces and its impact on friction suggests that the decrease in the lubricating ability of both layers is likely a result of changes in the hydration of the HA-LUB surface bound layers than changes in intermolecular or intramolecular binding. This work provides the first experimental evidence lending towards the relationship between bone demineralisation and articular cartilage degradation at the onset of OA and the mechanism through which elevated calcium levels in the synovial fluid act on joint lubrication.


Assuntos
Cartilagem Articular , Glicoproteínas , Osteoartrite , Humanos , Lubrificação , Ácido Hialurônico/química , Cálcio/metabolismo , Cartilagem Articular/metabolismo , Fricção , Líquido Sinovial/química
10.
ACS Biomater Sci Eng ; 10(6): 3775-3791, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38722625

RESUMO

This study investigates the electrochemical behavior of GelMA-based hydrogels and their interactions with PC12 neural cells under electrical stimulation in the presence of conducting substrates. Focusing on indium tin oxide (ITO), platinum, and gold mylar substrates supporting conductive scaffolds composed of hydrogel, graphene oxide, and gold nanorods, we explored how the substrate materials affect scaffold conductivity and cell viability. We examined the impact of an optimized electrical stimulation protocol on the PC12 cell viability. According to our findings, substrate selection significantly influences conductive hydrogel behavior, affecting cell viability and proliferation as a result. In particular, the ITO substrates were found to provide the best support for cell viability with an average of at least three times higher metabolic activity compared to platinum and gold mylar substrates over a 7 day stimulation period. The study offers new insights into substrate selection as a platform for neural cell stimulation and underscores the critical role of substrate materials in optimizing the efficacy of neural interfaces for biomedical applications. In addition to extending existing work, this study provides a robust platform for future explorations aimed at tailoring the full potential of tissue-engineered neural interfaces.


Assuntos
Sobrevivência Celular , Hidrogéis , Neurônios , Compostos de Estanho , Engenharia Tecidual , Alicerces Teciduais , Animais , Engenharia Tecidual/métodos , Células PC12 , Ratos , Compostos de Estanho/química , Compostos de Estanho/farmacologia , Hidrogéis/química , Alicerces Teciduais/química , Neurônios/fisiologia , Neurônios/citologia , Ouro/química , Ouro/farmacologia , Grafite/química , Grafite/farmacologia , Platina/química , Estimulação Elétrica , Nanotubos/química , Proliferação de Células
11.
ACS Appl Bio Mater ; 7(6): 4175-4192, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38830774

RESUMO

Nerve growth factor (NGF) plays a crucial role in cellular growth and neurodifferentiation. To achieve significant neuronal regeneration and repair using in vitro NGF delivery, spatiotemporal control that follows the natural neuronal processes must be developed. Notably, a challenge hindering this is the uncontrolled burst release from the growth factor delivery systems. The rapid depletion of NGF reduces treatment efficacy, leading to poor cellular response. To address this, we developed a highly controllable system using graphene oxygen (GO) and GelMA hydrogels modulated by electrical stimulation. Our system showed superior control over the release kinetics, reducing the burst up 30-fold. We demonstrate that the system is also able to sequester and retain NGF up to 10-times more efficiently than GelMA hydrogels alone. Our controlled release system enabled neurodifferentiation, as revealed by gene expression and immunostaining analysis. The increased retention and reduced burst release from our system show a promising pathway for nerve tissue engineering research toward effective regeneration.


Assuntos
Materiais Biocompatíveis , Estimulação Elétrica , Grafite , Hidrogéis , Fator de Crescimento Neural , Regeneração Nervosa , Hidrogéis/química , Hidrogéis/farmacologia , Grafite/química , Grafite/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Fator de Crescimento Neural/farmacologia , Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Animais , Tamanho da Partícula , Teste de Materiais , Ratos , Células PC12 , Engenharia Tecidual
12.
ACS Biomater Sci Eng ; 9(11): 5933-5952, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37791888

RESUMO

In vitro human skin models are evolving into versatile platforms for the study of skin biology and disorders. These models have many potential applications in the fields of drug testing and safety assessment, as well as cosmetic and new treatment development. The development of in vitro skin models that accurately mimic native human skin can reduce reliance on animal models and also allow for more precise, clinically relevant testing. Recent advances in biofabrication techniques and biomaterials have led to the creation of increasingly complex, multilayered skin models that incorporate important functional components of skin, such as the skin barrier, mechanical properties, pigmentation, vasculature, hair follicles, glands, and subcutaneous layer. This improved ability to recapitulate the functional aspects of native skin enhances the ability to model the behavior and response of native human skin, as the complex interplay of cell-to-cell and cell-to-material interactions are incorporated. In this review, we summarize the recent developments in in vitro skin models, with a focus on their applications, limitations, and future directions.


Assuntos
Materiais Biocompatíveis , Pele , Animais , Humanos
13.
J Mater Chem B ; 11(3): 581-593, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36533419

RESUMO

The development of electroactive cell-laden hydrogels (bioscaffolds) has gained interest in neural tissue engineering research due to their inherent electrical properties that can induce the regulation of cell behaviour. Hydrogels combined with electrically conducting materials can respond to external applied electric fields, where these stimuli can promote electro-responsive cell growth and proliferation. A successful neural interface for electrical stimulation should present the desired stable electrical properties, such as high conductivity, low impedance, increased charge storage capacity and similar mechanical properties related to a target neural tissue. We report how different electrical stimulation protocols can impact neuronal cells' survival and proliferation when using cell-laden GelMA/GO hydrogels. The rat pheochromocytoma cell line, PC12s encapsulated into hydrogels showed an increased proliferation behaviour with increasing current amplitudes applied. Furthermore, the presence of GO in GelMA hydrogels enhanced the metabolic activity and DNA content of PC12s compared with GelMA alone. Similarly, hydrogels provided survival of encapsulated cells at higher current amplitudes when compared to cells seeded onto ITO flat surfaces, which expressed significant cell death at a current amplitude of 2.50 mA. Our findings provide new rational choices for electroactive hydrogels and electrical stimulation with broad potential applications in neural tissue engineering research.


Assuntos
Hidrogéis , Alicerces Teciduais , Ratos , Animais , Hidrogéis/farmacologia , Sobrevivência Celular , Estimulação Elétrica , Proliferação de Células
14.
Biomater Sci ; 11(15): 5146-5162, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37194340

RESUMO

Neural interfaces are well-established as a tool to understand the behaviour of the nervous system via recording and stimulation of living neurons, as well as serving as neural prostheses. Conventional neural interfaces based on metals and carbon-based materials are generally optimised for high conductivity; however, a mechanical mismatch between the interface and the neural environment can significantly reduce long-term neuromodulation efficacy by causing an inflammatory response. This paper presents a soft composite material made of gelatin methacryloyl (GelMA) containing graphene oxide (GO) conjugated with gold nanorods (AuNRs). The soft hydrogel presents stiffness within the neural environment range of modulus below 5 kPa, while the AuNRs, when exposed to light in the near infrared range, provide a photothermal response that can be used to improve the spatial and temporal precision of neuromodulation. These favourable properties can be maintained at safer optical power levels when combined with electrical stimulation. In this paper we provide mechanical and biological characterization of the optical activity of the GO-AuNR composite hydrogel. The optical functionality of the material has been evaluated via photothermal stimulation of explanted rat retinal tissue. The outcomes achieved with this study encourage further investigation into optical and electrical costimulation parameters for a range of biomedical applications.


Assuntos
Nanotubos , Ratos , Animais , Engenharia Tecidual , Neurônios/fisiologia , Hidrogéis , Ouro
15.
Langmuir ; 28(22): 8433-45, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22551342

RESUMO

Quartz crystal microbalance with dissipation monitoring (QCM-D) was employed to characterize the adsorption of the model proteins, bovine serum albumin (BSA) and fibronectin (FN), to polypyrrole doped with dextran sulfate (PPy-DS) as a function of DS loading and surface roughness. BSA adsorption was greater on surfaces of increased roughness and was above what could be explained by the increase in surface area alone. Furthermore, the additional mass adsorbed on the rough films was concomitant with an increase in the rigidity of the protein layer. Analysis of the dynamic viscoelastic properties of the protein adlayer reveal BSA adsorption on the rough films occurs in two phases: (1) arrival and initial adsorption of protein to the polymer surface and (2) postadsorption molecular rearrangement to a more dehydrated and compact conformation that facilitates further recruitment of protein to the polymer interface, likely forming a multilayer. In contrast, FN adsorption was independent of surface roughness. However, films prepared from solutions containing the highest concentration of DS (20 mg/mL) demonstrated both an increase in adsorbed mass and adlayer viscoelasticity. This is attributed to the higher DS loading in the conducting polymer film resulting in presentation of a more hydrated molecular structure indicative of a more unfolded and bioactive conformation. Modulating the redox state of the PPy-DS polymers was shown to modify both the adsorbed mass and viscoelastic nature of FN adlayers. An oxidizing potential increased both the total adsorbed mass and the adlayer viscoelasticity. Our findings demonstrate that modification of polymer physicochemical and redox condition alters the nature of protein-polymer interaction, a process that may be exploited to tailor the bioactivity of protein through which interactions with cells and tissues may be controlled.


Assuntos
Sulfato de Dextrana/química , Fibronectinas/química , Polímeros/química , Pirróis/química , Soroalbumina Bovina/química , Adsorção , Animais , Bovinos , Elasticidade , Condutividade Elétrica , Microscopia de Força Atômica , Conformação Molecular , Oxirredução , Técnicas de Microbalança de Cristal de Quartzo , Propriedades de Superfície , Viscosidade
16.
J Control Release ; 352: 35-46, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36228955

RESUMO

Electroactive polymers (EAPs) have been investigated as materials for use in a range of biomedical applications, ranging from cell culture, electrical stimulation of cultured cells as well as controlled delivery of growth factors and drugs. Despite their excellent drug delivery ability, EAPs are susceptible to biofouling thus they often require surface functionalisation with antifouling coatings to limit unwanted non-specific protein adsorption. Here we demonstrate the surface modification of para toluene sulfonate (pTS) doped polypyrrole with the glycoprotein lubricin (LUB) to produce a self-assembled coating that both prevents surface biofouling while also serving as a high-capacity reservoir for cationic drugs which can then be released passively via diffusion or actively via an applied electrical potential. We carried out our investigation in two parts where we initially assessed the antifouling and cationic drug delivery ability of LUB tethered on a gold surface using quartz crystal microbalance with dissipation monitoring (QCM) to monitor molecular interactions occurring on a gold sensor surface. After confirming the ability of tethered LUB nano brush layers on a gold surface, we introduced an electrochemically grown EAP layer to act as the immobilisation surface for LUB before subsequently introducing the cationic drug doxorubicin hydrochloride (DOX). The release of cationic drug was then investigated under passive and electrochemically stimulated conditions. High-performance liquid chromatography (HPLC) was then carried out to quantify the amount of DOX released. It was shown that the amount of DOX released from nano brush layers of LUB tethered on gold and EAP surfaces could be increased by up to 30% per minute by applying a positive electrochemically stimulating pulse at 0.8 V for one minute. Using bovine serum albumin (BSA), we show that DOX loaded LUB tethered on para toluene sulfonic acid (pTS) doped polypyrrole retained antifouling ability of up to 75% when compared to unloaded tethered LUB. This work demonstrates the unique, novel ability of tethered LUB to actively participate in the delivery of cationic therapeutics on different substrate surfaces. This study could lead to the development of versatile multifunctional biomaterials for use in wide range of biomedical applications, such as dual drug delivery and lubricating coatings, dual drug delivery and antifouling coatings, cellular recording and stimulation.


Assuntos
Incrustação Biológica , Incrustação Biológica/prevenção & controle , Polímeros/química , Liberação Controlada de Fármacos , Pirróis , Glicoproteínas , Adsorção , Ouro , Tolueno , Propriedades de Superfície
17.
ACS Biomater Sci Eng ; 8(7): 2764-2797, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35696306

RESUMO

Three-dimensional (3D) printing and 3D bioprinting are promising technologies for a broad range of healthcare applications from frontier regenerative medicine and tissue engineering therapies to pharmaceutical advancements yet must overcome the challenges of biocompatibility and resolution. Through comparison of traditional biofabrication methods with 3D (bio)printing, this review highlights the promise of 3D printing for the production of on-demand, personalized, and complex products that enhance the accessibility, effectiveness, and safety of drug therapies and delivery systems. In addition, this review describes the capacity of 3D bioprinting to fabricate patient-specific tissues and living cell systems (e.g., vascular networks, organs, muscles, and skeletal systems) as well as its applications in the delivery of cells and genes, microfluidics, and organ-on-chip constructs. This review summarizes how tailoring selected parameters (i.e., accurately selecting the appropriate printing method, materials, and printing parameters based on the desired application and behavior) can better facilitate the development of optimized 3D-printed products and how dynamic 4D-printed strategies (printing materials designed to change with time or stimulus) may be deployed to overcome many of the inherent limitations of conventional 3D-printed technologies. Comprehensive insights into a critical perspective of the future of 4D bioprinting, crucial requirements for 4D printing including the programmability of a material, multimaterial printing methods, and precise designs for meticulous transformations or even clinical applications are also given.


Assuntos
Bioimpressão , Medicina Regenerativa , Bioimpressão/métodos , Setor de Assistência à Saúde , Humanos , Impressão Tridimensional , Medicina Regenerativa/métodos , Tração
18.
ACS Sens ; 7(11): 3379-3388, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36374944

RESUMO

Improving outcomes for cancer patients during treatment and monitoring for cancer recurrence requires personalized care which can only be achieved through regular surveillance for biomarkers. Unfortunately, routine detection for blood-based biomarkers is cost-prohibitive using currently specialized laboratories. Using a rapid self-assembly sensing interface amenable to methods of mass production, we demonstrate the ability to detect and quantify a small carbohydrate-based cancer biomarker, Tn antigen (αGalNAc-Ser/Thr) in a small volume of blood, using a test format strip reminiscent of a blood glucose test. The detection of Tn antigen at picomolar levels is achieved through a new transduction mechanism based on the impact of Tn antigen interactions on the molecular dynamic motion of a lectin cross-linked lubricin antifouling brush. In tests performed on retrospective blood plasma samples from patients presenting three different tumor types, differentiation between healthy and diseased patients was achieved, highlighting the clinical potential for cancer monitoring.


Assuntos
Neoplasias , Sistemas Automatizados de Assistência Junto ao Leito , Humanos , Estudos Retrospectivos , Neoplasias/diagnóstico , Carboidratos
19.
Polymers (Basel) ; 13(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34451130

RESUMO

Biofabrication using well-matched cell/materials systems provides unprecedented opportunities for dealing with human health issues where disease or injury overtake the body's native regenerative abilities. Such opportunities can be enhanced through the development of biomaterials with cues that appropriately influence embedded cells into forming functional tissues and organs. In this context, biomaterials' reliance on rigid biofabrication techniques needs to support the incorporation of a hierarchical mimicry of local and bulk biological cues that mimic the key functional components of native extracellular matrix. Advances in synthetic self-assembling peptide biomaterials promise to produce reproducible mimics of tissue-specific structures and may go some way in overcoming batch inconsistency issues of naturally sourced materials. Recent work in this area has demonstrated biofabrication with self-assembling peptide biomaterials with unique biofabrication technologies to support structural fidelity upon 3D patterning. The use of synthetic self-assembling peptide biomaterials is a growing field that has demonstrated applicability in dermal, intestinal, muscle, cancer and stem cell tissue engineering.

20.
ACS Biomater Sci Eng ; 7(8): 3696-3708, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34283570

RESUMO

In the field of bionics, the long-term effectiveness of implantable bionic interfaces depends upon maintaining a "clean" and unfouled electrical interface with biological tissues. Lubricin (LUB) is an innately biocompatible glycoprotein with impressive antifouling properties. Unlike traditional antiadhesive coatings, LUB coatings do not passivate electrode surfaces, giving LUB coatings great potential for controlling surface fouling of implantable electrode interfaces. This study characterizes the antifouling properties of bovine native LUB (N-LUB), recombinant human LUB (R-LUB), hyaluronic acid (HA), and composite coatings of HA and R-LUB (HA/R-LUB) on gold electrodes against human primary fibroblasts and chondrocytes in passive and electrically stimulated environments for up to 96 h. R-LUB coatings demonstrated highly effective antifouling properties, preventing nearly all adhesion and proliferation of fibroblasts and chondrocytes even under biphasic electrical stimulation. N-LUB coatings, while showing efficacy in the short term, failed to produce sustained antifouling properties against fibroblasts or chondrocytes over longer periods of time. HA/R-LUB composite films also demonstrated highly effective antifouling performance equal to the R-LUB coatings in both passive and electrically stimulated environments. The high electrochemical stability and long-lasting antifouling properties of R-LUB and HA/R-LUB coatings in electrically stimulating environments reveal the potential of these coatings for controlling unwanted cell adhesion in implantable bionic applications.


Assuntos
Ouro , Ácido Hialurônico , Animais , Bovinos , Eletrodos , Glicoproteínas , Humanos , Ácido Hialurônico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA