Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(11)2021 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-34071029

RESUMO

Breast cancer, like most forms of cancer, is a fatal disease that claims more than half a million lives every year. In 2020, breast cancer overtook lung cancer as the most commonly diagnosed form of cancer. Though extremely deadly, the survival rate and longevity increase substantially with early detection and diagnosis. The treatment protocol also varies with the stage of breast cancer. Diagnosis is typically done using histopathological slides from which it is possible to determine whether the tissue is in the Ductal Carcinoma In Situ (DCIS) stage, in which the cancerous cells have not spread into the encompassing breast tissue, or in the Invasive Ductal Carcinoma (IDC) stage, wherein the cells have penetrated into the neighboring tissues. IDC detection is extremely time-consuming and challenging for physicians. Hence, this can be modeled as an image classification task where pattern recognition and machine learning can be used to aid doctors and medical practitioners in making such crucial decisions. In the present paper, we use an IDC Breast Cancer dataset that contains 277,524 images (with 78,786 IDC positive images and 198,738 IDC negative images) to classify the images into IDC(+) and IDC(-). To that end, we use feature extractors, including textural features, such as SIFT, SURF and ORB, and statistical features, such as Haralick texture features. These features are then combined to yield a dataset of 782 features. These features are ensembled by stacking using various Machine Learning classifiers, such as Random Forest, Extra Trees, XGBoost, AdaBoost, CatBoost and Multi Layer Perceptron followed by feature selection using Pearson Correlation Coefficient to yield a dataset with four features that are then used for classification. From our experimental results, we found that CatBoost yielded the highest accuracy (92.55%), which is at par with other state-of-the-art results-most of which employ Deep Learning architectures. The source code is available in the GitHub repository.


Assuntos
Neoplasias da Mama , Carcinoma Intraductal não Infiltrante , Neoplasias da Mama/diagnóstico , Computadores , Humanos , Aprendizado de Máquina , Redes Neurais de Computação
2.
IEEE/ACM Trans Comput Biol Bioinform ; 19(4): 2124-2136, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33819160

RESUMO

Breast cancer is one of the main causes behind cancer deaths in women worldwide. Yet, owing to the complexity of the histopathological images and the arduousness of manual analysis task, the entire diagnosis process becomes time-consuming and the results are often contingent on the pathologist's subjectivity. Thus developing an automated, precise histopathological image classification system is crucial. This paper presents a novel hybrid ensemble framework consisting of multiple fine-tuned convolutional neural network (CNN) architectures as supervised feature extractors and eXtreme gradient boosting trees (XGBoost) as a top-level classifier, for patch wise classification of high-resolution breast histopathology images. Due to the semantic complexity of the patch images, a single CNN architecture may not always extract high quality features, and the traditional Softmax classifier might not provide ideal results for classifying the CNN extracted features. Thus we aim to improve patch wise classification by proposing a hybrid ensemble model that incorporates different discriminating feature representations of the patches, coupled with XGBoost for robust classification. Experimental results show that our proposed method outperforms state-of-the-art methods to the best of our knowledge.


Assuntos
Neoplasias da Mama , Carcinoma , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Microscopia , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA