Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Fish Physiol Biochem ; 48(6): 1665-1684, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36459361

RESUMO

Cell growth and differentiation signals of insulin-like growth factor-1 (IGF-1), a key regulator in embryonic and postnatal development, are mediated through the IGF-1 receptor (IGF-1R), which activates several downstream pathways. The present study aims to address crucial organogenesis and development pathways including Akt, MAPKs, heat shock response, apoptotic and autophagic machinery, and energy metabolism in relation to IGF-1R activation during five developmental stages of reared Seriola dumerili: 1 day prior to hatching fertilized eggs (D-1), hatching day (D0), 3 days post-hatching larvae (D3), 33 (D33) and 46 (D46) days post-hatching juveniles. During both the fertilized eggs stage and larval-to-juvenile transition, IGF-1R/Akt pathway activation may mediate the hypertrophic signaling, while p44/42 MAPK phosphorylation was apparent at S. dumerili post-hatching processes and juvenile organs completion. On the contrary, apoptosis was induced during embryogenesis and autophagy at hatching day indicating a potential involvement in morphogenetic rearrangements and yolk-sac reserves depletion. Larvae morphogenesis was accompanied by a metabolic turnover with increased substantial energy consumption. The findings of the present study demonstrate the developmental stages-specific shift in critical signaling pathways during the ontogeny of reared S. dumerili.


Assuntos
Perciformes , Proteínas Proto-Oncogênicas c-akt , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Mitógenos , Transdução de Sinais , Perciformes/fisiologia , Fator de Crescimento Insulin-Like I/metabolismo , Receptor IGF Tipo 1 , Larva/metabolismo , Morte Celular
2.
Int J Mol Sci ; 22(14)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34299159

RESUMO

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are proteins that contain highly conserved functional domains and sequence motifs that are correlated with their unique biophysical activities, to regulate cardiac pacemaker activity and synaptic transmission. These pacemaker proteins have been studied in mammalian species, but little is known now about their heart distribution in lower vertebrates and c-AMP modulation. Here, we characterized the pacemaker system in the heart of the wild Atlantic cod (Gadus morhua), with respect to primary pacemaker molecular markers. Special focus is given to the structural, ultrastructural and molecular characterization of the pacemaker domain, through the expression of HCN channel genes and the immunohistochemistry of HCN isoforms, including the location of intracardiac neurons that are adjacent to the sinoatrial region of the heart. Similarly to zebrafish and mammals, these neurons are immunoreactive to ChAT, VAChT and nNOS. It has been shown that cardiac pacemaking can be modulated by sympathetic and parasympathetic pathways, and the existence of intracardiac neurons projecting back to the central nervous system provide a plausible link between them.


Assuntos
Gadus morhua/metabolismo , Coração/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Ativação do Canal Iônico , Miócitos Cardíacos/metabolismo , Animais , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Gadus morhua/genética , Gadus morhua/crescimento & desenvolvimento , Coração/inervação , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Miócitos Cardíacos/citologia , Isoformas de Proteínas , Transmissão Sináptica
3.
Microorganisms ; 11(8)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37630449

RESUMO

Greater amberjack (Seriola dumerili) is a new species in marine aquaculture with high mortalities at the larval stages. The microbiota of amberjack larvae was analyzed using 16S rDNA sequencing in two groups, one added copepod nauplii (Acartia tonsa) in the diet, and one without copepods (control). In addition, antagonistic bacteria were isolated from amberjack larvae and live food cultures. Proteobacteria was the most abundant phylum followed by Bacteroidota in amberjack larvae. The composition and diversity of the microbiota were influenced by age, but not by diet. Microbial community richness and diversity significantly increased over time. Rhodobacteraceae was the most dominant family followed by Vibrionaceae, which showed the highest relative abundance in larvae from the control group 31 days after hatching. Alcaligenes and Thalassobius genera exhibited a significantly higher relative abundance in the copepod group. Sixty-two antagonistic bacterial strains were isolated and screened for their ability to inhibit four fish pathogens (Aeromonas veronii, Vibrio harveyi, V. anguillarum, V. alginolyticus) using a double-layer test. Phaeobacter gallaeciensis, Phaeobacter sp., Ruegeria sp., and Rhodobacter sp. isolated from larvae and Artemia sp. inhibited the fish pathogens. These antagonistic bacteria could be used as host-derived probiotics to improve the growth and survival of the greater amberjack larvae.

4.
Animals (Basel) ; 13(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37443952

RESUMO

Metamorphosis entails hormonally regulated morphological and physiological changes requiring high energy levels. Probiotics as feed supplements generate ameliorative effects on host nutrient digestion and absorption. Thereby, the aim of the present research was to investigate the impact of the probiotic Phaeobacter inhibens as a water additive on cellular signaling pathways in the metamorphosis of greater amberjack (Seriola dumerili). Activation of insulin-like growth factor type 1 receptor (IGF-1R), protein kinase B (Akt), mitogen-activated protein kinases (MAPKs) and AMP-activated protein kinase (AMPK), induction of heat shock proteins (Hsps), and programmed cell death were assessed through SDS-Page/immunoblot analysis, while energy metabolism was determined through enzymatic activities. According to the results, greater amberjack reared in P. inhibens-enriched water entered the metamorphic phase with greater body length, while protein synthesis was triggered to facilitate the hypertrophic growth as indicated by IGF-1/Akt activation and AMPK inhibition. Contrarily, MAPKs levels were reduced, whereas variations in Hsps response were evident in the probiotic treatment. Apoptosis and autophagy were mobilized potentially for the structural remodeling processes. Furthermore, the elevated enzymatic activities of intermediary metabolism highlighted the excess energy demands of metamorphosis. Collectively, the present findings demonstrate that P. inhibens may reinforce nutrient utilization, thus leading greater amberjack to an advanced growth and developmental state.

5.
Foods ; 12(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37627990

RESUMO

Fish is a fundamental component of the human diet, and in the near future the proportion of aquatic foods originating from aquaculture production is expected to increase to over 56%. The sustainable growth of the aquaculture sector involves the use of new sustainable raw materials as substitutes for traditional fishmeal and fish oil ingredients, but it is crucial that the substitution maintains the nutritional value of the fish meat. In addition, the preservation of the nutritional value should be a mandatory requirement of new technologies that extend the shelf life of fish. In this context, we evaluated the impact of a newly formulated feed and three preservation treatments (brine, pulsed electric field (PEF), and PEF plus brine) on the fatty acid composition and protein and lipid digestibility of sea bass fillets. In non-digested fillets, although slightly reduced by the newly formulated feed (standard = 2.49 ± 0.14; newly formulated = 2.03 ± 0.10) the n-3/n-6 PUFA ratio indicated good nutritional value. The preservation treatments did not modify the fatty acid content and profile of non-digested fillets. Conversely, protein and lipid digestibility were not affected by the different diets but were significantly reduced by brine, with or without PEF, while PEF alone had no effect. Overall, our results indicated that the newly formulated feed containing 50% less fishmeal is a good compromise between the sustainability and nutritional value of cultivated seabass, and PEF is a promising preservation technology deserving of further study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA