Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(6): e2217607120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36730189

RESUMO

The spleen clears altered red blood cells (RBCs) from circulation, contributing to the balance between RBC formation (erythropoiesis) and removal. The splenic RBC retention and elimination occur predominantly in open circulation where RBCs flow through macrophages and inter-endothelial slits (IESs). The mechanisms underlying and interconnecting these processes significantly impact clinical outcomes. In sickle cell disease (SCD), blockage of intrasplenic sickled RBCs is observed in infants splenectomized due to acute splenic sequestration crisis (ASSC). This life-threatening RBC pooling and organ swelling event is plausibly triggered or enhanced by intra-tissular hypoxia. We present an oxygen-mediated spleen-on-a-chip platform for in vitro investigations of the homeostatic balance in the spleen. To demonstrate and validate the benefits of this general microfluidic platform, we focus on SCD and study the effects of hypoxia on splenic RBC retention and elimination. We observe that RBC retention by IESs and RBC-macrophage adhesion are faster in blood samples from SCD patients than those from healthy subjects. This difference is markedly exacerbated under hypoxia. Moreover, the sickled RBCs under hypoxia show distinctly different phagocytosis processes from those non-sickled RBCs under hypoxia or normoxia. We find that reoxygenation significantly alleviates RBC retention at IESs, and leads to rapid unsickling and fragmentation of the ingested sickled RBCs inside macrophages. These results provide unique mechanistic insights into how the spleen maintains its homeostatic balance between splenic RBC retention and elimination, and shed light on how disruptions in this balance could lead to anemia, splenomegaly, and ASSC in SCD and possible clinical manifestations in other hematologic diseases.


Assuntos
Anemia Falciforme , Baço , Humanos , Microfluídica , Eritrócitos , Hipóxia
2.
PLoS Comput Biol ; 18(1): e1009728, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34986147

RESUMO

Microaneurysms (MAs) are one of the earliest clinically visible signs of diabetic retinopathy (DR). MA leakage or rupture may precipitate local pathology in the surrounding neural retina that impacts visual function. Thrombosis in MAs may affect their turnover time, an indicator associated with visual and anatomic outcomes in the diabetic eyes. In this work, we perform computational modeling of blood flow in microchannels containing various MAs to investigate the pathologies of MAs in DR. The particle-based model employed in this study can explicitly represent red blood cells (RBCs) and platelets as well as their interaction in the blood flow, a process that is very difficult to observe in vivo. Our simulations illustrate that while the main blood flow from the parent vessels can perfuse the entire lumen of MAs with small body-to-neck ratio (BNR), it can only perfuse part of the lumen in MAs with large BNR, particularly at a low hematocrit level, leading to possible hypoxic conditions inside MAs. We also quantify the impacts of the size of MAs, blood flow velocity, hematocrit and RBC stiffness and adhesion on the likelihood of platelets entering MAs as well as their residence time inside, two factors that are thought to be associated with thrombus formation in MAs. Our results show that enlarged MA size, increased blood velocity and hematocrit in the parent vessel of MAs as well as the RBC-RBC adhesion promote the migration of platelets into MAs and also prolong their residence time, thereby increasing the propensity of thrombosis within MAs. Overall, our work suggests that computational simulations using particle-based models can help to understand the microvascular pathology pertaining to MAs in DR and provide insights to stimulate and steer new experimental and computational studies in this area.


Assuntos
Simulação por Computador , Retinopatia Diabética/fisiopatologia , Microaneurisma/fisiopatologia , Vasos Retinianos/fisiopatologia , Velocidade do Fluxo Sanguíneo/fisiologia , Retinopatia Diabética/diagnóstico por imagem , Eritrócitos/fisiologia , Hematócrito , Humanos , Microaneurisma/diagnóstico por imagem , Vasos Retinianos/diagnóstico por imagem , Trombose/diagnóstico por imagem , Trombose/fisiopatologia
3.
PLoS Comput Biol ; 18(3): e1009892, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35255089

RESUMO

Emerging clinical evidence suggests that thrombosis in the microvasculature of patients with Coronavirus disease 2019 (COVID-19) plays an essential role in dictating the disease progression. Because of the infectious nature of SARS-CoV-2, patients' fresh blood samples are limited to access for in vitro experimental investigations. Herein, we employ a novel multiscale and multiphysics computational framework to perform predictive modeling of the pathological thrombus formation in the microvasculature using data from patients with COVID-19. This framework seamlessly integrates the key components in the process of blood clotting, including hemodynamics, transport of coagulation factors and coagulation kinetics, blood cell mechanics and adhesive dynamics, and thus allows us to quantify the contributions of many prothrombotic factors reported in the literature, such as stasis, the derangement in blood coagulation factor levels and activities, inflammatory responses of endothelial cells and leukocytes to the microthrombus formation in COVID-19. Our simulation results show that among the coagulation factors considered, antithrombin and factor V play more prominent roles in promoting thrombosis. Our simulations also suggest that recruitment of WBCs to the endothelial cells exacerbates thrombogenesis and contributes to the blockage of the blood flow. Additionally, we show that the recent identification of flowing blood cell clusters could be a result of detachment of WBCs from thrombogenic sites, which may serve as a nidus for new clot formation. These findings point to potential targets that should be further evaluated, and prioritized in the anti-thrombotic treatment of patients with COVID-19. Altogether, our computational framework provides a powerful tool for quantitative understanding of the mechanism of pathological thrombus formation and offers insights into new therapeutic approaches for treating COVID-19 associated thrombosis.


Assuntos
COVID-19/complicações , Microvasos/fisiopatologia , Trombose/fisiopatologia , Trombose/virologia , Anticoagulantes , Coagulação Sanguínea , Biologia Computacional , Humanos , Modelos Biológicos , SARS-CoV-2
4.
PLoS Comput Biol ; 16(4): e1007709, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32343724

RESUMO

Mechanical interactions between flowing and coagulated blood (thrombus) are crucial in dictating the deformation and remodeling of a thrombus after its formation in hemostasis. We propose a fully-Eulerian, three-dimensional, phase-field model of thrombus that is calibrated with existing in vitro experimental data. This phase-field model considers spatial variations in permeability and material properties within a single unified mathematical framework derived from an energy perspective, thereby allowing us to study effects of thrombus microstructure and properties on its deformation and possible release of emboli under different hemodynamic conditions. Moreover, we combine this proposed thrombus model with a particle-based model which simulates the initiation of the thrombus. The volume fraction of a thrombus obtained from the particle simulation is mapped to an input variable in the proposed phase-field thrombus model. The present work is thus the first computational study to integrate the initiation of a thrombus through platelet aggregation with its subsequent viscoelastic responses to various shear flows. This framework can be informed by clinical data and potentially be used to predict the risk of diverse thromboembolic events under physiological and pathological conditions.


Assuntos
Vasos Sanguíneos/fisiologia , Trombose/fisiopatologia , Biofísica/métodos , Coagulação Sanguínea/fisiologia , Plaquetas/fisiologia , Simulação por Computador , Humanos , Modelos Biológicos , Adesividade Plaquetária/fisiologia , Agregação Plaquetária/fisiologia , Trombose/sangue
5.
Proc Natl Acad Sci U S A ; 115(38): 9574-9579, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30190436

RESUMO

In red blood cell (RBC) diseases, the spleen contributes to anemia by clearing the damaged RBCs, but its unique ability to mechanically challenge RBCs also poses the risk of inducing other pathogenic effects. We have analyzed RBCs in hereditary spherocytosis (HS) and hereditary elliptocytosis (HE), two typical examples of blood disorders that result in membrane protein defects in RBCs. We use a two-component protein-scale RBC model to simulate the traversal of the interendothelial slit (IES) in the human spleen, a stringent biomechanical challenge on healthy and diseased RBCs that cannot be directly observed in vivo. In HS, our results confirm that the RBC loses surface due to weakened cohesion between the lipid bilayer and the cytoskeleton and reveal that surface loss may result from vesiculation of the RBC as it crosses IES. In HE, traversing IES induces sustained elongation of the RBC with impaired elasticity and fragmentation in severe disease. Our simulations thus suggest that in inherited RBC disorders, the spleen not only filters out pathological RBCs but also directly contributes to RBC alterations. These results provide a mechanistic rationale for different clinical outcomes documented following splenectomy in HS patients with spectrin-deficient and ankyrin-deficient RBCs and offer insights into the pathogenic role of human spleen in RBC diseases.


Assuntos
Eliptocitose Hereditária/patologia , Eritrócitos/metabolismo , Modelos Biológicos , Osmose/fisiologia , Esferocitose Hereditária/patologia , Baço/metabolismo , Anquirinas/genética , Citoesqueleto , Eliptocitose Hereditária/sangue , Eliptocitose Hereditária/genética , Eliptocitose Hereditária/cirurgia , Contagem de Eritrócitos , Hemodinâmica/fisiologia , Humanos , Bicamadas Lipídicas/metabolismo , Espectrina/genética , Esferocitose Hereditária/sangue , Esferocitose Hereditária/genética , Esferocitose Hereditária/cirurgia , Baço/patologia , Esplenectomia , Resultado do Tratamento
6.
Proc Natl Acad Sci U S A ; 115(38): 9473-9478, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30190429

RESUMO

Polymerization and adhesion, dynamic processes that are hallmarks of sickle cell disease (SCD), have thus far been studied in vitro only separately. Here, we present quantitative results of the simultaneous and synergistic effects of adhesion and polymerization of deoxygenated sickle hemoglobin (HbS) in the human red blood cell (RBC) on the mechanisms underlying vasoocclusive pain crisis. For this purpose, we employ a specially developed hypoxic microfluidic platform, which is capable of inducing sickling and unsickling of RBCs in vitro, to test blood samples from eight patients with SCD. We supplemented these experimental results with detailed molecular-level computational simulations of cytoadherence and biorheology using dissipative particle dynamics. By recourse to image analysis techniques, we characterize sickle RBC maturation stages in the following order of the degree of adhesion susceptibility under hypoxia: sickle reticulocytes in circulation (SRs) → sickle mature erythrocytes (SMEs) → irreversibly sickled cells (ISCs). We show that (i) hypoxia significantly enhances sickle RBC adherence; (ii) HbS polymerization enhances sickle cell adherence in SRs and SMEs, but not in ISCs; (iii) SRs exhibit unique adhesion dynamics where HbS fiber projections growing outward from the cell surface create multiple sites of adhesion; and (iv) polymerization stimulates adhesion and vice versa, thereby establishing the bidirectional coupling between the two processes. These findings offer insights into possible mechanistic pathways leading to vasoocclusion crisis. They also elucidate the processes underlying the onset of occlusion that may involve circulating reticulocytes, which are more abundant in hemolytic anemias due to robust compensatory erythropoiesis.


Assuntos
Anemia Falciforme/sangue , Eritrócitos Anormais/metabolismo , Eritrócitos/metabolismo , Hemoglobina Falciforme/metabolismo , Anemia Falciforme/patologia , Adesão Celular , Hipóxia Celular , Humanos , Hipóxia , Microfluídica/métodos , Polimerização , Reticulócitos/metabolismo
7.
Proc Natl Acad Sci U S A ; 113(28): 7804-9, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27354532

RESUMO

Red blood cells (RBCs) can be cleared from circulation when alterations in their size, shape, and deformability are detected. This function is modulated by the spleen-specific structure of the interendothelial slit (IES). Here, we present a unique physiological framework for development of prognostic markers in RBC diseases by quantifying biophysical limits for RBCs to pass through the IES, using computational simulations based on dissipative particle dynamics. The results show that the spleen selects RBCs for continued circulation based on their geometry, consistent with prior in vivo observations. A companion analysis provides critical bounds relating surface area and volume for healthy RBCs beyond which the RBCs fail the "physical fitness test" to pass through the IES, supporting independent experiments. Our results suggest that the spleen plays an important role in determining distributions of size and shape of healthy RBCs. Because mechanical retention of infected RBC impacts malaria pathogenesis, we studied key biophysical parameters for RBCs infected with Plasmodium falciparum as they cross the IES. In agreement with experimental results, surface area loss of an infected RBC is found to be a more important determinant of splenic retention than its membrane stiffness. The simulations provide insights into the effects of pressure gradient across the IES on RBC retention. By providing quantitative biophysical limits for RBCs to pass through the IES, the narrowest circulatory bottleneck in the spleen, our results offer a broad approach for developing quantitative markers for diseases such as hereditary spherocytosis, thalassemia, and malaria.


Assuntos
Eritrócitos/citologia , Modelos Teóricos , Baço/fisiologia , Fenômenos Biomecânicos , Simulação por Computador , Humanos , Plasmodium falciparum
8.
Comput Phys Commun ; 217: 171-179, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29104303

RESUMO

Mesoscopic numerical simulations provide a unique approach for the quantification of the chemical influences on red blood cell functionalities. The transport Dissipative Particles Dynamics (tDPD) method can lead to such effective multiscale simulations due to its ability to simultaneously capture mesoscopic advection, diffusion, and reaction. In this paper, we present a GPU-accelerated red blood cell simulation package based on a tDPD adaptation of our red blood cell model, which can correctly recover the cell membrane viscosity, elasticity, bending stiffness, and cross-membrane chemical transport. The package essentially processes all computational workloads in parallel by GPU, and it incorporates multi-stream scheduling and non-blocking MPI communications to improve inter-node scalability. Our code is validated for accuracy and compared against the CPU counterpart for speed. Strong scaling and weak scaling are also presented to characterizes scalability. We observe a speedup of 10.1 on one GPU over all 16 cores within a single node, and a weak scaling efficiency of 91% across 256 nodes. The program enables quick-turnaround and high-throughput numerical simulations for investigating chemical-driven red blood cell phenomena and disorders.

9.
Proc Natl Acad Sci U S A ; 110(28): 11326-30, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23798393

RESUMO

Vasoocclusion crisis is a key hallmark of sickle cell anemia. Although early studies suggest that this crisis is caused by blockage of a single elongated cell, recent experiments have revealed that vasoocclusion is a complex process triggered by adhesive interactions among different cell groups in multiple stages. However, the quantification of the biophysical characteristics of sickle cell anemia remains an open issue. Based on dissipative particle dynamics, we develop a multiscale model for the sickle red blood cells (SS-RBCs), accounting for diversity in both shapes and cell rigidities, to investigate the precise mechanism of vasoocclusion. First, we investigate the adhesive dynamics of a single SS-RBC in shear flow and static conditions, and find that the different cell groups (SS2: young-deformable SS-RBCs, ISCs: rigid-irreversible SS-RBCs) exhibit heterogeneous adhesive behavior due to the diverse cell morphologies and membrane rigidities. We quantify the observed adhesion behavior (in static conditions) in terms of a balance of free energies due to cell adhesion and deformation, and propose a power law that relates the free-energy increase as a function of the contact area. We further simulate postcapillary flow of SS-RBC suspensions with different cell fractions. The more adhesive SS2 cells interact with the vascular endothelium and trap ISC cells, resulting in vasoocclusion in vessels less than 12-14 µm depending on the hematocrit. Under inflammation, adherent leukocytes may also trap ISC cells, resulting in vasoocclusion in even larger vessels.


Assuntos
Anemia Falciforme/patologia , Arteriopatias Oclusivas/patologia , Humanos
10.
Proc Natl Acad Sci U S A ; 110(33): 13356-61, 2013 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-23898181

RESUMO

We study the biomechanical interactions between the lipid bilayer and the cytoskeleton in a red blood cell (RBC) by developing a general framework for mesoscopic simulations. We treated the lipid bilayer and the cytoskeleton as two distinct components and developed a unique whole-cell model of the RBC, using dissipative particle dynamics (DPD). The model is validated by comparing the predicted results with measurements from four different and independent experiments. First, we simulated the micropipette aspiration and quantified the cytoskeletal deformation. Second, we studied the membrane fluctuations of healthy RBCs and RBCs parasitized to different intraerythrocytic stages by the malaria-inducing parasite Plasmodium falciparum. Third, we subjected the RBC to shear flow and investigated the dependence of its tank-treading frequency on shear rate. Finally, we simulated the bilayer-cytoskeletal detachment in channel flow to quantify the strength of such interactions when the corresponding bonds break. Taken together, these experiments and corresponding systematic DPD simulations probe the governing constitutive response of the cytoskeleton, elastic stiffness, viscous friction, and strength of bilayer-cytoskeletal interactions as well as membrane viscosities. Hence, the DPD simulations and comparisons with available independent experiments serve as validation of the unique two-component model and lead to useful insights into the biomechanical interactions between the lipid bilayer and the cytoskeleton of the RBC. Furthermore, they provide a basis for further studies to probe cell mechanistic processes in health and disease in a manner that guides the design and interpretation of experiments and to develop simulations of phenomena that cannot be studied systematically by experiments alone.


Assuntos
Citoesqueleto/metabolismo , Eritrócitos/citologia , Eritrócitos/parasitologia , Bicamadas Lipídicas/metabolismo , Modelos Biológicos , Plasmodium falciparum , Fenômenos Biomecânicos , Simulação por Computador , Elasticidade , Humanos , Resistência ao Cisalhamento , Viscosidade
11.
Proc Natl Acad Sci U S A ; 108(29): 11772-7, 2011 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-21730178

RESUMO

The viscosity of blood has long been used as an indicator in the understanding and treatment of disease, and the advent of modern viscometers allows its measurement with ever-improving clinical convenience. However, these advances have not been matched by theoretical developments that can yield a quantitative understanding of blood's microrheology and its possible connection to relevant biomolecules (e.g., fibrinogen). Using coarse-grained molecular dynamics and two different red blood cell models, we accurately predict the dependence of blood viscosity on shear rate and hematocrit. We explicitly represent cell-cell interactions and identify the types and sizes of reversible rouleaux structures that yield a tremendous increase of blood viscosity at low shear rates. We also present the first quantitative estimates of the magnitude of adhesive forces between red cells. In addition, our simulations support the hypothesis, previously deduced from experiments, of yield stress as an indicator of cell aggregation. This non-Newtonian behavior is analyzed and related to the suspension's microstructure, deformation, and dynamics of single red blood cells. The most complex cell dynamics occurs in the intermediate shear rate regime, where individual cells experience severe deformation and transient folded conformations. The generality of these cell models together with single-cell measurements points to the future prediction of blood-viscosity anomalies and the corresponding microstructures associated with various diseases (e.g., malaria, AIDS, and diabetes mellitus). The models can easily be adapted to tune the properties of a much wider class of complex fluids including capsule and vesicle suspensions.


Assuntos
Viscosidade Sanguínea , Modelos Biológicos , Simulação de Dinâmica Molecular , Reologia/métodos , Adesão Celular/fisiologia , Simulação por Computador , Humanos
12.
PNAS Nexus ; 3(2): pgae031, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38312226

RESUMO

Red blood cell (RBC) aging manifests through progressive changes in cell morphology, rigidity, and expression of membrane proteins. To maintain the quality of circulating blood, splenic macrophages detect the biochemical signals and biophysical changes of RBCs and selectively clear them through erythrophagocytosis. In sickle cell disease (SCD), RBCs display alterations affecting their interaction with macrophages, leading to aberrant phagocytosis that may cause life-threatening spleen sequestration crises. To illuminate the mechanistic control of RBC engulfment by macrophages in SCD, we integrate a system biology model of RBC-macrophage signaling interactions with a biophysical model of macrophage engulfment, as well as in vitro phagocytosis experiments using the spleen-on-a-chip technology. Our modeling framework accurately predicts the phagocytosis dynamics of RBCs under different disease conditions, reveals patterns distinguishing normal and sickle RBCs, and identifies molecular targets including Src homology 2 domain-containing protein tyrosine phosphatase-1 (SHP1) and cluster of differentiation 47 (CD47)/signal regulatory protein α (SIRPα) as therapeutic targets to facilitate the controlled clearance of sickle RBCs in the spleen.

13.
PLoS Comput Biol ; 7(12): e1002270, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22144878

RESUMO

Red blood cells (RBCs) infected by a Plasmodium parasite in malaria may lose their membrane deformability with a relative membrane stiffening more than ten-fold in comparison with healthy RBCs leading to potential capillary occlusions. Moreover, infected RBCs are able to adhere to other healthy and parasitized cells and to the vascular endothelium resulting in a substantial disruption of normal blood circulation. In the present work, we simulate infected RBCs in malaria using a multiscale RBC model based on the dissipative particle dynamics method, coupling scales at the sub-cellular level with scales at the vessel size. Our objective is to conduct a full validation of the RBC model with a diverse set of experimental data, including temperature dependence, and to identify the limitations of this purely mechanistic model. The simulated elastic deformations of parasitized RBCs match those obtained in optical-tweezers experiments for different stages of intra-erythrocytic parasite development. The rheological properties of RBCs in malaria are compared with those obtained by optical magnetic twisting cytometry and by monitoring membrane fluctuations at room, physiological, and febrile temperatures. We also study the dynamics of infected RBCs in Poiseuille flow in comparison with healthy cells and present validated bulk viscosity predictions of malaria-infected blood for a wide range of parasitemia levels (percentage of infected RBCs with respect to the total number of cells in a unit volume).


Assuntos
Deformação Eritrocítica/fisiologia , Membrana Eritrocítica/fisiologia , Eritrócitos/fisiologia , Malária Falciparum/sangue , Modelos Biológicos , Adesão Celular , Simulação por Computador , Módulo de Elasticidade , Citometria de Fluxo , Hemorreologia , Humanos , Plasmodium falciparum , Viscosidade
14.
Phys Rev Lett ; 107(13): 134502, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-22026858

RESUMO

We identify a dominant mechanism in the interaction between a slender flexible structure undergoing free vibrations in sheared cross-flow and the vortices forming in its wake: energy is transferred from the fluid to the body under a resonance condition, defined as wake-body frequency synchronization close to a natural frequency of the structure; this condition occurs within a well-defined region of the span, which is dominated by counterclockwise, figure-eight orbits. Clockwise orbits are associated with damping fluid forces.

15.
R Soc Open Sci ; 7(8): 201102, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32968536

RESUMO

Microaneurysms (MAs) are one of the earliest clinically visible signs of diabetic retinopathy (DR). Vision can be reduced at any stage of DR by MAs, which may enlarge, rupture and leak fluid into the neural retina. Recent advances in ophthalmic imaging techniques enable reconstruction of the geometries of MAs and quantification of the corresponding haemodynamic metrics, such as shear rate and wall shear stress, but there is lack of computational models that can predict thrombus formation in individual MAs. In this study, we couple a particle model to a continuum model to simulate the platelet aggregation in MAs with different shapes. Our simulation results show that under a physiologically relevant blood flow rate, thrombosis is more pronounced in saccular-shaped MAs than fusiform-shaped MAs, in agreement with recent clinical findings. Our model predictions of the size and shape of the thrombi in MAs are consistent with experimental observations, suggesting that our model is capable of predicting the formation of thrombus for newly detected MAs. This is the first quantitative study of thrombosis in MAs through simulating platelet aggregation, and our results suggest that computational models can be used to predict initiation and development of intraluminal thrombus in MAs as well as provide insights into their role in the pathophysiology of DR.

16.
Interface Focus ; 9(3): 20180083, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31065346

RESUMO

In statistical modelling with Gaussian process regression, it has been shown that combining (few) high-fidelity data with (many) low-fidelity data can enhance prediction accuracy, compared to prediction based on the few high-fidelity data only. Such information fusion techniques for multi-fidelity data commonly approach the high-fidelity model f h(t) as a function of two variables (t, s), and then use f l(t) as the s data. More generally, the high-fidelity model can be written as a function of several variables (t, s 1, s 2….); the low-fidelity model f l and, say, some of its derivatives can then be substituted for these variables. In this paper, we will explore mathematical algorithms for multi-fidelity information fusion that use such an approach towards improving the representation of the high-fidelity function with only a few training data points. Given that f h may not be a simple function-and sometimes not even a function-of f l, we demonstrate that using additional functions of t, such as derivatives or shifts of f l, can drastically improve the approximation of f h through Gaussian processes. We also point out a connection with 'embedology' techniques from topology and dynamical systems. Our illustrative examples range from instructive caricatures to computational biology models, such as Hodgkin-Huxley neural oscillations.

18.
Artigo em Inglês | MEDLINE | ID: mdl-20836052

RESUMO

Advances in computational methods and medical imaging techniques have enabled accurate simulations of subject-specific blood flows at the level of individual blood cell and in complex arterial networks. While in the past, we were limited to simulations with one arterial bifurcation, the current state-of-the-art is simulations of arterial networks consisting of hundreds of arteries. In this paper, we review the advances in methods for vascular flow simulations in large arterial trees. We discuss alternative approaches and validity of various assumptions often made to simplify the modeling. To highlight the similarities and discrepancies of data computed with different models, computationally intensive three-dimensional (3D) and inexpensive one-dimensional (1D) flow simulations in very large arterial networks are employed. Finally, we discuss the possibilities, challenges, and limitations of the computational methods for predicting outcomes of therapeutic interventions for individual patients.


Assuntos
Artérias/anatomia & histologia , Artérias/fisiologia , Modelos Cardiovasculares , Fluxo Sanguíneo Regional/fisiologia , Animais , Velocidade do Fluxo Sanguíneo/fisiologia , Circulação Cerebrovascular/fisiologia , Complacência (Medida de Distensibilidade) , Biologia Computacional , Simulação por Computador , Hemorreologia , Humanos , Imageamento Tridimensional , Biologia de Sistemas
19.
Artigo em Inglês | MEDLINE | ID: mdl-19965026

RESUMO

We present a coarse-grained red blood cell (RBC) model with accurate and realistic mechanical properties, rheology and dynamics. The modeled membrane is represented by a triangular mesh which incorporates shear inplane energy, bending energy, and area and volume conservation constraints. The macroscopic membrane elastic properties are imposed through semi-analytic theory, and are matched with those obtained in optical tweezers stretching experiments. Rheological measurements characterized by time-dependent complex modulus are extracted from the membrane thermal fluctuations, and compared with those obtained from the optical magnetic twisting cytometry results. The results allow us to define a meaningful characteristic time of the membrane. The dynamics of RBCs observed in shear flow suggests that a purely elastic model for the RBC membrane is not appropriate, and therefore a viscoelastic model is required. The set of proposed analyses and numerical tests can be used as a complete model testbed in order to calibrate the modeled viscoelastic membranes to accurately represent RBCs in health and disease.


Assuntos
Biofísica/métodos , Eritrócitos/patologia , Calibragem , Simulação por Computador , Elasticidade , Deformação Eritrocítica , Eritrócitos/metabolismo , Hemorreologia , Humanos , Bicamadas Lipídicas/química , Modelos Estatísticos , Modelos Teóricos , Reologia , Estresse Mecânico , Viscosidade
20.
J Chem Phys ; 124(18): 184101, 2006 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-16709091

RESUMO

Coarse graining of dense liquid-state systems can potentially lead to fast simulation times, thus providing an effective bridge between atomistic and continuum descriptions. Dissipative particle dynamics (DPD) is a stochastic Lagrangian method that provides a simple formal procedure for coarse graining. Here we analyze some of the fundamental modeling ideas of DPD and identify three factors that limit its application at high coarse-graining levels: interparticle force magnitude, compressibility, and geometric confinement. These artifacts lead to erroneous transport properties of highly coarse-grained DPD systems and thus incorrect dynamics in simulating complex fluids, e.g., colloids and polymers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA