RESUMO
ABSTRACT: Fusion oncogenes can be cancer-defining molecular alterations that are essential for diagnosis and therapy selection.1,2 Rapid and accessible molecular diagnostics for fusion-driven leukemias such as acute promyelocytic leukemia (APL), Philadelphia chromosome-positive acute lymphoblastic leukemia, and chronic myeloid leukemia (CML) are unavailable, creating a barrier to timely diagnosis and effective targeted therapy in many health care settings, including community hospitals and low-resource environments. We developed CRISPR-based RNA-fusion transcript detection assays using SHERLOCK (specific high-sensitivity enzymatic reporter unlocking) for the diagnosis of fusion-driven leukemias. We validated these assays using diagnostic samples from patients with APL and CML from academic centers and dried blood spots from low-resource environments, demonstrating 100% sensitivity and specificity. We identified assay optimizations to enable the use of these tests outside of tertiary cancer centers and clinical laboratories, enhancing the potential impact of this technology. Rapid point-of-care diagnostics can improve outcomes for patients with cancer by expanding access to therapies for highly treatable diseases that would otherwise lead to serious adverse outcomes due to delayed or missed diagnoses.
Assuntos
Proteínas de Fusão Oncogênica , Humanos , Proteínas de Fusão Oncogênica/genética , Técnicas de Diagnóstico Molecular/métodos , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/diagnóstico , Leucemia Promielocítica Aguda/terapia , Sistemas CRISPR-Cas , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/diagnóstico , Leucemia Mielogênica Crônica BCR-ABL Positiva/terapia , Leucemia/genética , Leucemia/diagnóstico , Leucemia/terapia , Repetições Palindrômicas Curtas Agrupadas e Regularmente EspaçadasRESUMO
Polycomb repressive epigenetic complexes are recurrently dysregulated in cancer. Unlike polycomb repressive complex 2 (PRC2), the role of PRC1 in oncogenesis and therapy resistance is not well-defined. Here, we demonstrate that highly recurrent mutations of the PRC1 subunits BCOR and BCORL1 in leukemia disrupt assembly of a noncanonical PRC1.1 complex, thereby selectively unlinking the RING-PCGF enzymatic core from the chromatin-targeting auxiliary subcomplex. As a result, BCOR-mutated PRC1.1 is localized to chromatin but lacks repressive activity, leading to epigenetic reprogramming and transcriptional activation at target loci. We define a set of functional targets that drive aberrant oncogenic signaling programs in PRC1.1-mutated cells and primary patient samples. Activation of these PRC1.1 targets in BCOR-mutated cells confers acquired resistance to treatment while sensitizing to targeted kinase inhibition. Our study thus reveals a novel epigenetic mechanism that explains PRC1.1 tumor-suppressive activity and identifies a therapeutic strategy in PRC1.1-mutated cancer. SIGNIFICANCE: We demonstrate that BCOR and BCORL1 mutations in leukemia unlink PRC1.1 repressive function from target genes, resulting in epigenetic reprogramming and activation of aberrant cell signaling programs that mediate treatment resistance. Our study provides mechanistic insights into the pathogenesis of PRC1.1-mutated leukemia that inform novel therapeutic approaches. This article is highlighted in the In This Issue feature, p. 85.
Assuntos
Carcinogênese , Leucemia , Carcinogênese/genética , Proteínas de Ciclo Celular/genética , Cromatina , Epigênese Genética/genética , Humanos , Leucemia/genética , Mutação/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Transdução de Sinais/genéticaRESUMO
Adding the selective BCL-2 inhibitor venetoclax to reduced-intensity conditioning chemotherapy (fludarabine and busulfan [FluBu2]) may enhance antileukemic cytotoxicity and thereby reduce the risk of posttransplant relapse. This phase 1 study investigated the recommended phase 2 dose (RP2D) of venetoclax, a BCL-2 selective inhibitor, when added to FluBu2 in adult patients with high-risk acute myeloid leukemia (AML), myelodysplastic syndromes (MDS), and MDS/myeloproliferative neoplasms (MPN) undergoing transplant. Patients received dose-escalated venetoclax (200-400 mg daily starting day -8 for 6-7 doses) in combination with fludarabine 30 mg/m2 per day for 4 doses and busulfan 0.8 mg/kg twice daily for 8 doses on day -5 to day -2 (FluBu2). Transplant related-toxicity was evaluated from the first venetoclax dose on day -8 to day 28. Twenty-two patients were treated. At study entry, 5 patients with MDS and MDS/MPN had 5% to 10% marrow blasts, and 18 (82%) of 22 had a persistent detectable mutation. Grade 3 adverse events included mucositis, diarrhea, and liver transaminitis (n = 3 each). Neutrophil/platelet recovery and acute/chronic graft-versus-host-disease rates were similar to those of standard FluBu2. No dose-limiting toxicities were observed. The RP2D of venetoclax was 400 mg daily for 7 doses. With a median follow-up of 14.7 months (range, 8.6-24.8 months), median overall survival was not reached, and progression-free survival was 12.2 months (95% confidence interval, 6.0-not estimable). In patients with high-risk AML, MDS, and MDS/MPN, adding venetoclax to FluBu2 was feasible and safe. To further address relapse risk, assessment of maintenance therapy after venetoclax plus FluBu2 transplant is ongoing. This study was registered at clinicaltrials.gov as #NCT03613532.