Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(44): 18581-18591, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34726398

RESUMO

Detailed knowledge about the semiconductor/electrolyte interface in photoelectrochemical (PEC) systems has been lacking because of the inherent difficulty of studying such interfaces, especially during operation. Current understandings of these interfaces are mostly from the extrapolation of ex situ data or from modeling approaches. Hence, there is a need for operando techniques to study such interfaces to develop a better understanding of PEC systems. Here, we use operando photoelectrochemical attenuated total reflection Fourier transform infrared (PEC-ATR-FTIR) spectroscopy to study the metal oxide/electrolyte interface, choosing BiVO4 as a model photoanode. We demonstrate that preferential dissolution of vanadium occurs from the BiVO4/water interface, upon illumination in open-circuit conditions, while both bismuth and vanadium dissolution occurs when an anodic potential is applied under illumination. This dynamic dissolution alters the surface Bi:V ratio over time, which subsequently alters the band bending in the space charge region. This further impacts the overall PEC performance of the photoelectrode, at a time scale very relevant for most lab-scale studies, and therefore has serious implications on the performance analysis and fundamental studies performed on this and other similar photoelectrodes.

2.
J Am Chem Soc ; 2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32469508

RESUMO

Illumination of a voltage-biased plasmonic Ag cathode during CO2 reduction results in a suppression of the H2 evolution reaction while enhancing CO2 reduction. This effect has been shown to be photonic rather than thermal, but the exact plasmonic mechanism is unknown. Here, we conduct an in situ ATR-SEIRAS (attenuated total reflectance-surface-enhanced infrared absorption spectroscopy) study of a sputtered thin film Ag cathode on a Ge ATR crystal in CO2-saturated 0.1 M KHCO3 over a range of potentials under both dark and illuminated (365 nm, 125 mW cm-2) conditions to elucidate the nature of this plasmonic enhancement. We find that the onset potential of CO2 reduction to adsorbed CO on the Ag surface is -0.25 VRHE and is identical in the light and the dark. As the production of gaseous CO is detected in the light near this onset potential but is not observed in the dark until -0.5 VRHE, we conclude that the light must be assisting the desorption of CO from the surface. Furthermore, the HCO3- wavenumber and peak area increase immediately upon illumination, precluding a thermal effect. We propose that the enhanced local electric field that results from the localized surface plasmon resonance (LSPR) is strengthening the HCO3- bond, further increasing the local pH. This would account for the decrease in H2 formation and increase the CO2 reduction products in the light.

3.
J Am Chem Soc ; 141(40): 15891-15900, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31523949

RESUMO

Over the past decade, electrochemical carbon dioxide reduction has become a thriving area of research with the aim of converting electricity to renewable chemicals and fuels. Recent advances through catalyst development have significantly improved selectivity and activity. However, drawing potential dependent structure-activity relationships has been complicated, not only due to the ill-defined and intricate morphological and mesoscopic structure of electrocatalysts, but also by immense concentration gradients existing between the electrode surface and bulk solution. In this work, by using in situ surface enhanced infrared absorption spectroscopy (SEIRAS) and computational modeling, we explicitly show that commonly used strong phosphate buffers cannot sustain the interfacial pH during CO2 electroreduction on copper electrodes at relatively low current densities, <10 mA/cm2. The pH near the electrode surface was observed to be as much as 5 pH units higher compared to bulk solution in 0.2 M phosphate buffer at potentials relevant to the formation of hydrocarbons (-1 V vs RHE), even on smooth polycrystalline copper electrodes. Drastically increasing the buffer capacity did not stand out as a viable solution for the problem as the concurrent production of hydrogen increased dramatically, which resulted in a breakdown of the buffer in a narrow potential range. These unforeseen results imply that most of the studies, if not all, on electrochemical CO2 reduction to hydrocarbons in CO2 saturated aqueous solutions were evaluated under mass transport limitations on copper electrodes. We underscore that the large concentration gradients on electrodes with high local current density (e.g., nanostructured) have important implications on the selectivity, activity, and kinetic analysis, and any attempt to draw structure-activity relationships must rule out mass transport effects.

4.
Chemphyschem ; 20(22): 2904-2925, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31441195

RESUMO

The field of electrochemical CO2 conversion is undergoing significant growth in terms of the number of publications and worldwide research groups involved. Despite improvements of the catalytic performance, the complex reaction mechanisms and solution chemistry of CO2 have resulted in a considerable amount of discrepancies between theoretical and experimental studies. A clear identification of the reaction mechanism and the catalytic sites are of key importance in order to allow for a qualitative breakthrough and, from an experimental perspective, calls for the use of in-situ or operando spectroscopic techniques. In-situ infrared spectroscopy can provide information on the nature of intermediate species and products in real time and, in some cases, with relatively high time resolution. In this contribution, we review key theoretical aspects of infrared reflection spectroscopy, followed by considerations of practical implementation. Finally, recent applications to the electrocatalytic reduction of CO2 are reviewed, including challenges associated with the detection of reaction intermediates.

5.
Phys Chem Chem Phys ; 16(24): 12194-201, 2014 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-24817571

RESUMO

The catalytic activity and hydrocarbon selectivity in electrochemical carbon dioxide (CO2) reduction on cuprous oxide (Cu2O) derived copper nanoparticles is discussed. Cuprous oxide films with [100], [110] and [111] orientation and variable thickness were electrodeposited by reduction of copper(ii) lactate on commercially available copper plates. After initiation of the electrochemical CO2 reduction by these oxide structures, the selectivity of the process was found to largely depend on the parent Cu2O film thickness, rather than on the initial crystal orientation. Starting with thin Cu2O films, besides CO and hydrogen, selective formation of ethylene is observed with very high ethylene-to-methane ratios (∼8 to 12). In addition to these products, thicker Cu2O films yield a remarkably large amount of ethane. Long term Faradaic efficiency analysis of hydrocarbons shows no sign of deactivation of the electrodes after 5 hours of continuous experiment. Online mass spectroscopy studies combined with X-ray diffraction data suggest the reduction of the Cu2O films in the presence of CO2, generating a nanoparticulate Cu morphology, prior to the production of hydrogen, CO, and hydrocarbons. Optimizing coverage, number density and size of the copper nanoparticles, as well as local surface pH, may allow highly selective formation of the industrially important product ethylene.

6.
ACS Energy Lett ; 9(5): 2472-2483, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38751972

RESUMO

CO2 from carbonate-based capture solutions requires a substantial energy input. Replacing this step with (bi)carbonate electrolysis has been commonly proposed as an efficient alternative that coproduces CO/syngas. Here, we assess the feasibility of directly integrating air contactors with (bi)carbonate electrolyzers by leveraging process, multiphysics, microkinetic, and technoeconomic models. We show that the copresence of CO32- with HCO3- in the contactor effluent greatly diminishes the electrolyzer performance and eventually results in a reduced CO2 capture fraction to ≤1%. Additionally, we estimate suitable effluents for (bi)carbonate electrolysis to require 5-14 times larger contactors than conventionally needed contactors, leading to unfavorable process economics. Notably, we show that the regeneration of the capture solvent inside (bi)carbonate electrolyzers is insufficient for CO2 recapture. Thus, we suggest process modifications that would allow this route to be operationally feasible. Overall, this work sheds light on the practical operation of integrated direct air capture with (bi)carbonate electrolysis.

7.
Anal Chem ; 85(1): 33-8, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23210911

RESUMO

Attenuated total reflection-infrared (ATR-IR) spectroscopy is increasingly used to characterize solids and liquids as well as (catalytic) chemical conversion. Here we demonstrate that a piece of silicon wafer cut by a dicing machine or cleaved manually can be used as disposable internal reflection element (IRE) without the need for polishing and laborious edge preparation. Technical aspects, fundamental differences, and pros and cons of these novel disposable IREs and commercial IREs are discussed. The use of a crystal (the Si wafer) in a disposable manner enables simultaneous preparation and analysis of substrates and application of ATR spectroscopy in high temperature processes that may lead to irreversible interaction between the crystal and the substrate. As representative application examples, the disposable IREs were used to study high temperature thermal decomposition and chemical changes of polyvinyl alcohol (PVA) in a titania (TiO(2)) matrix and assemblies of 65-450 nm thick polystyrene (PS) films.

8.
ACS Appl Energy Mater ; 5(5): 5983-5994, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35647494

RESUMO

Continued advancements in the electrochemical reduction of CO2 (CO2RR) have emphasized that reactivity, selectivity, and stability are not explicit material properties but combined effects of the catalyst, double-layer, reaction environment, and system configuration. These realizations have steadily built upon the foundational work performed for a broad array of transition metals performed at 5 mA cm-2, which historically guided the research field. To encompass the changing advancements and mindset within the research field, an updated baseline at elevated current densities could then be of value. Here we seek to re-characterize the activity, selectivity, and stability of the five most utilized transition metal catalysts for CO2RR (Ag, Au, Pd, Sn, and Cu) at elevated reaction rates through electrochemical operation, physical characterization, and varied operating parameters to provide a renewed resource and point of comparison. As a basis, we have employed a common cell architecture, highly controlled catalyst layer morphologies and thicknesses, and fixed current densities. Through a dataset of 88 separate experiments, we provide comparisons between CO-producing catalysts (Ag, Au, and Pd), highlighting CO-limiting current densities on Au and Pd at 72 and 50 mA cm-2, respectively. We further show the instability of Sn in highly alkaline environments, and the convergence of product selectivity at elevated current densities for a Cu catalyst in neutral and alkaline media. Lastly, we reflect upon the use and limits of reaction rates as a baseline metric by comparing catalytic selectivity at 10 versus 200 mA cm-2. We hope the collective work provides a resource for researchers setting up CO2RR experiments for the first time.

9.
Chem Sci ; 11(7): 1738-1749, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-34123269

RESUMO

Electrochemical CO2 reduction has received an increased amount of interest in the last decade as a promising avenue for storing renewable electricity in chemical bonds. Despite considerable progress on catalyst performance using nanostructured electrodes, the sensitivity of the reaction to process conditions has led to debate on the origin of the activity and high selectivity. Additionally, this raises questions on the transferability of the performance and knowledge to other electrochemical systems. At its core, the discrepancy is primarily a result of the highly porous nature of nanostructured electrodes, which are vulnerable to both mass transport effects and structural changes during the electrolysis. Both effects are not straightforward to identify and difficult to decouple. Despite the susceptibility of nanostructured electrodes to mass transfer limitations, we highlight that nanostructured silver electrodes exhibit considerably higher activity when normalized to the electrochemically active surface in contrast to gold and copper electrodes. Alongside, we provide a discussion on how active surface area and thickness of the catalytic layer itself can influence the onset potential, selectivity, stability, activity and mass transfer inside and outside of the three dimensional catalyst layer. Key parameters and potential solutions are highlighted to decouple mass transfer effects from the measured activity in electrochemical cells utilizing CO2 saturated aqueous solutions.

10.
ACS Energy Lett ; 3(6): 1301-1306, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29911182

RESUMO

In this work, the highly selective and stable electrocatalytic reduction of CO2 to CO on nanostructured Ag electrocatalysts is presented. The Ag electrocatalysts are synthesized by the electroreduction of Ag2CO3 formed by in situ anodic-etching of Ag foil in a KHCO3 electrolyte. After 3 min of this etching treatment, the Ag2CO3-derived nanostructured Ag electrocatalysts are capable of producing CO with up to 92% Faradaic efficiency at an overpotential as low as 290 mV, which surpasses all of the reported Ag catalysts at identical conditions to date. In addition, the anodic-etched Ag retained ∼90% catalytic selectivity in the electroreduction of CO2 to CO for more than 100 h. The Ag2CO3-derived Ag is able to facilitate the activation of CO2 via reduction of the activation energy barrier of the initial electron transfer and provide an increased number of active sites, resulting in the dramatically improved catalytic activity for the reduction of CO2 to CO.

11.
Adv Mater ; 28(7): 1400-5, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26866621

RESUMO

The spatioselective functionalization of silicon microwires with axial p/n junctions is achieved using the electronic properties of the junction. (Photo)electrochemical deposition of metals is demonstrated at the bottom and top of the wires in the dark and light, respectively. The junction depletion layer remains unmodified, which allows its visualization and comparison with theoretical calculations.

12.
Nat Commun ; 7: 10748, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26888578

RESUMO

Aqueous-phase electrochemical reduction of carbon dioxide requires an active, earth-abundant electrocatalyst, as well as highly efficient mass transport. Here we report the design of a porous hollow fibre copper electrode with a compact three-dimensional geometry, which provides a large area, three-phase boundary for gas-liquid reactions. The performance of the copper electrode is significantly enhanced; at overpotentials between 200 and 400 mV, faradaic efficiencies for carbon dioxide reduction up to 85% are obtained. Moreover, the carbon monoxide formation rate is at least one order of magnitude larger when compared with state-of-the-art nanocrystalline copper electrodes. Copper hollow fibre electrodes can be prepared via a facile method that is compatible with existing large-scale production processes. The results of this study may inspire the development of new types of microtubular electrodes for electrochemical processes in which at least one gas-phase reactant is involved, such as in fuel cell technology.

13.
Nat Commun ; 6: 8177, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26324108

RESUMO

The electrochemical conversion of carbon dioxide and water into useful products is a major challenge in facilitating a closed carbon cycle. Here we report a cobalt protoporphyrin immobilized on a pyrolytic graphite electrode that reduces carbon dioxide in an aqueous acidic solution at relatively low overpotential (0.5 V), with an efficiency and selectivity comparable to the best porphyrin-based electrocatalyst in the literature. While carbon monoxide is the main reduction product, we also observe methane as by-product. The results of our detailed pH-dependent studies are explained consistently by a mechanism in which carbon dioxide is activated by the cobalt protoporphyrin through the stabilization of a radical intermediate, which acts as Brønsted base. The basic character of this intermediate explains how the carbon dioxide reduction circumvents a concerted proton-electron transfer mechanism, in contrast to hydrogen evolution. Our results and their mechanistic interpretations suggest strategies for designing improved catalysts.

14.
Ultrason Sonochem ; 19(3): 692-700, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21944934

RESUMO

Shape control of inorganic nanoparticles generally requires the use of surfactants or ligands to passivate certain crystallographic planes. Additive free shape control methods utilize the differences in the growth rates of crystallographic planes. We combined this approach with the sonochemical method to synthesize copper hydroxysulfate (Brochantite) with morphologies ranging from flowers, to bricks, belts and needles. Sodium peroxydisulfate, which was used as the sulfate and hydroxide source, was decomposed thermally and/or sonically under various pH and temperature conditions. The relative release rates of the sulfate and hydroxide anions determined the final form of the crystals. This technique yielded products even at acidic pH, marking a distinction from the literature reactions, which start with stoichiometric amounts of sulfate and hydroxide anions and yield only a single crystal morphology.


Assuntos
Sulfato de Cobre/síntese química , Sulfato de Cobre/efeitos da radiação , Sonicação/métodos , Água/química , Ondas de Choque de Alta Energia , Tamanho da Partícula , Doses de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA