Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 587: 146-152, 2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-34875533

RESUMO

Lysyl hydroxylase 2 (LH2) regulates intermolecular cross-linking of collagen molecules. Accumulation of LH2-modified collagen, which is highly stable and resistant to collagenase cleavage, is one cause of fibrosis. We previously demonstrated that conventional LH2 knockout mice showed embryonic lethality. Here we established LH2 conditional knockout mice using a tamoxifen-inducible Cre system. Morphological analysis of LH2-deficient fibroblasts by microscopy showed a dramatic increase in the number of filopodia, the finger-like cell surface projections that enable cell movement. The tips and leading edges of these filopodia exhibited up-regulated expression of Myosin-X (Myo10), a regulator of filopodial integrity. Wound healing assays demonstrated that migration of LH2-deficient cells was significantly faster than that of control cells. Gene expression profiling data also supported this phenotype. Together these findings indicate that LH2 deficiency may prevent fibrosis through decreased accumulation of LH2-cross-linked collagen, and that fibroblasts with faster migration contribute to enhanced wound healing activity. In conclusion, our cellular models provide evidence that LH2 deficiency plays a critical role in cell migration mediated through filopodia formation. Understanding the precise role of this phenotype in LH2-deficient cells may be helpful to define the pathogenesis of fibrosis. As such, detailed analyses of fibrosis and wound healing using LH2-deficient mouse models are needed.


Assuntos
Fibroblastos/enzimologia , Miosinas/genética , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/genética , Pseudópodes/enzimologia , Animais , Movimento Celular , Colágeno/genética , Colágeno/metabolismo , Fibroblastos/citologia , Fibrose , Regulação da Expressão Gênica , Integrases/genética , Integrases/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos , Miosinas/metabolismo , Fenótipo , Cultura Primária de Células , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/deficiência , Pseudópodes/ultraestrutura , Cicatrização/genética
2.
Biochem Biophys Res Commun ; 597: 115-121, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35134609

RESUMO

Radiotherapy is commonly used to treat oral squamous cell carcinoma (OSCC), and radioresistance is a critical factor resulting in poor outcomes. Several genes have been reported to be therapeutic targets for radioresistance; however, the involvement of chromatin accessibility in radioresistance has not been clarified in OSCC cells. Accordingly, in this study, we evaluated chromatin accessibility in radioresistant (HSC-3) and radiosensitive (KOSC-2) cells, identified from nine OSCC cell lines using clonogenic survival assays after irradiation. Chromatin accessibility in radioresistant OSCC cells was assessed using assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq). Gene expression was evaluated by quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) and immunoblot analysis. Viability was assessed by MTS assay. We found 1273 peaks (open chromatin regions by ATAC-seq) related to 8 Gy irradiation in HSC-3 but not KOSC-2 cells, among which 235 genes located around the chromatin open peaks were identified by ChIPpeakAnno analysis. Subsequently, 12 genes were selected as signal transduction-related genes by Gene Ontology analysis, and gene expression was confirmed by RT-qPCR. Among these genes, adenylate cyclase 2 (ADCY2) was significantly upregulated after treatment with irradiation in HSC-3 but not KOSC-2 cells. To further evaluate ADCY2 function in radioresistant cells, we performed ADCY2 knockdown by transfection of HSC-3 cells with small interfering RNA (siADCY2). Cell viability after irradiation was significantly decreased in siADCY2-transfected cells compared with that in control cells. These results suggested that ADCY2 expression was related to the open chromatin region in radioresistant OSCC cells and that ADCY2 may have therapeutic efficacy when used in combination with radiotherapy in patients with OSCC.

3.
Int J Mol Sci ; 23(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35409173

RESUMO

Recently, our studies revealed that some passenger strands of microRNAs (miRNAs) were closely involved in cancer pathogenesis. Analysis of miRNA expression signatures showed that the expression of miR-30e-3p (the passenger strand of pre-miR-30e) was significantly downregulated in cancer tissues. In this study, we focused on miR-30e-3p (the passenger strand of pre-miR-30e). We addressed target genes controlled by miR-30e-3p that were closely associated with the molecular pathogenesis of head and neck squamous cell carcinoma (HNSCC). Ectopic expression assays demonstrated that the expression of miR-30e-3p attenuated cancer cell malignant phenotypes (e.g., cell proliferation, migration, and invasive abilities). Our analysis of miR-30e-3p targets revealed that 11 genes (ADA, CPNE8, C14orf126, ERGIC2, HMGA2, PLS3, PSMD10, RALB, SERPINE1, SFXN1, and TMEM87B) were expressed at high levels in HNSCC patients. Moreover, they significantly predicted the short survival of HNSCC patients based on 5-year overall survival rates (p < 0.05) in The Cancer Genome Atlas (TCGA). Among these targets, SERPINE1 was found to be an independent prognostic factor for patient survival (multivariate Cox regression; hazard ratio = 1.6078, p < 0.05). Aberrant expression of SERPINE1 was observed in HNSCC clinical samples by immunohistochemical analysis. Functional assays by targeting SERPINE1 expression revealed that the malignant phenotypes (e.g., proliferation, migration, and invasion abilities) of HNSCC cells were suppressed by the silencing of SERPINE1 expression. Our miRNA-based approach will accelerate our understanding of the molecular pathogenesis of HNSCC.


Assuntos
Neoplasias de Cabeça e Pescoço , MicroRNAs , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
4.
Int J Mol Sci ; 23(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36012427

RESUMO

Advanced-stage oral squamous cell carcinoma (OSCC) patients are treated with combination therapies, such as surgery, radiation, chemotherapy, and immunotherapy. However, OSCC cells acquire resistance to these treatments, resulting in local recurrence and distant metastasis. The identification of genes involved in drug resistance is essential for improving the treatment of this disease. In this study, we applied chromatin immunoprecipitation sequencing (ChIP-Seq) to profile active enhancers. For that purpose, we used OSCC cell lines that had been exposed to cetuximab for a prolonged period. In total, 64 chromosomal loci were identified as active super-enhancers (SE) according to active enhancer marker histone H3 lysine 27 acetylation (H3K27ac) ChIP-Seq. In addition, a total of 131 genes were located in SE regions, and 34 genes were upregulated in OSCC tissues by TCGA-OSCC analysis. Moreover, high expression of four genes (C9orf89; p = 0.035, CENPA; p = 0.020, PISD; p = 0.0051, and TRAF2; p = 0.0075) closely predicted a poorer prognosis for OSCC patients according to log-rank tests. Increased expression of the four genes (mRNA Z-score ≥ 0) frequently co-occurred in TCGA-OSCC analyses. The high and low expression groups of the four genes showed significant differences in prognosis, suggesting that there are clear differences in the pathways based on the underlying gene expression profiles. These data indicate that potential stratified therapeutic strategies could be used to overcome resistance to drugs (including cetuximab) and further improve responses in drug-sensitive patients.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Cetuximab , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Humanos , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
5.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34884487

RESUMO

In humans, the coronin family is composed of seven proteins containing WD-repeat domains that regulate actin-based cellular processes. Some members of the coronin family are closely associated with cancer cell migration and invasion. The Cancer Genome Atlas (TCGA) analysis revealed that CORO1C, CORO2A, and CORO7 were significantly upregulated in oral squamous cell carcinoma (OSCC) tissues (p < 0.05). Moreover, the high expression of CORO2A was significantly predictive of the 5-year survival rate of patients with OSCC (p = 0.0203). Overexpression of CORO2A was detected in OSCC clinical specimens by immunostaining. siRNA-mediated knockdown of CORO2A suppressed cancer cell migration and invasion abilities. Furthermore, we investigated the involvement of microRNAs (miRNAs) in the molecular mechanism underlying CORO2A overexpression in OSCC cells. TCGA analysis confirmed that tumor-suppressive miR-125b-5p and miR-140-5p were significantly downregulated in OSCC tissues. Notably, these miRNAs bound directly to the 3'-UTR of CORO2A and controlled CORO2A expression in OSCC cells. In summary, we found that aberrant expression of CORO2A facilitates the malignant transformation of OSCC cells, and that downregulation of tumor-suppressive miRNAs is involved in CORO2A overexpression. Elucidation of the interaction between genes and miRNAs will help reveal the molecular pathogenesis of OSCC.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/patologia , Movimento Celular , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Proteínas dos Microfilamentos/metabolismo , Neoplasias Bucais/patologia , Apoptose , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Proliferação de Células , Humanos , Proteínas dos Microfilamentos/genética , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Invasividade Neoplásica , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas
6.
Int J Mol Sci ; 22(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201353

RESUMO

We identified the microRNA (miRNA) expression signature of head and neck squamous cell carcinoma (HNSCC) tissues by RNA sequencing, in which 168 miRNAs were significantly upregulated, including both strands of the miR-31 duplex (miR-31-5p and miR-31-3p). The aims of this study were to identify networks of tumor suppressor genes regulated by miR-31-5p and miR-31-3p in HNSCC cells. Our functional assays showed that inhibition of miR-31-5p and miR-31-3p attenuated cancer cell malignant phenotypes (cell proliferation, migration, and invasion), suggesting that they had oncogenic potential in HNSCC cells. Our in silico analysis revealed 146 genes regulated by miR-31 in HNSCC cells. Among these targets, the low expression of seven genes (miR-31-5p targets: CACNB2 and IL34; miR-31-3p targets: CGNL1, CNTN3, GAS7, HOPX, and PBX1) was closely associated with poor prognosis in HNSCC. According to multivariate Cox regression analyses, the expression levels of five of those genes (CACNB2: p = 0.0189; IL34: p = 0.0425; CGNL1: p = 0.0014; CNTN3: p = 0.0304; and GAS7: p = 0.0412) were independent prognostic factors in patients with HNSCC. Our miRNA signature and miRNA-based approach will provide new insights into the molecular pathogenesis of HNSCC.


Assuntos
Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Neoplasias de Cabeça e Pescoço/patologia , MicroRNAs/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Biomarcadores Tumorais/genética , Proliferação de Células , Perfilação da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Taxa de Sobrevida , Células Tumorais Cultivadas
7.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34576110

RESUMO

We newly generated an RNA-sequencing-based microRNA (miRNA) expression signature of head and neck squamous cell carcinoma (HNSCC). Analysis of the signature revealed that both strands of some miRNAs, including miR-139-5p (the guide strand) and miR-139-3p (the passenger strand) of miR-139, were downregulated in HNSCC tissues. Analysis of The Cancer Genome Atlas confirmed the low expression levels of miR-139 in HNSCC. Ectopic expression of these miRNAs attenuated the characteristics of cancer cell aggressiveness (e.g., cell proliferation, migration, and invasion). Our in silico analyses revealed a total of 28 putative targets regulated by pre-miR-139 (miR-139-5p and miR-139-3p) in HNSCC cells. Of these, the GNA12 (guanine nucleotide-binding protein subunit alpha-12) and OLR1 (oxidized low-density lipoprotein receptor 1) expression levels were identified as independent factors that predicted patient survival according to multivariate Cox regression analyses (p = 0.0018 and p = 0.0104, respectively). Direct regulation of GNA12 and OLR1 by miR-139-3p in HNSCC cells was confirmed through luciferase reporter assays. Moreover, overexpression of GNA12 and OLR1 was detected in clinical specimens of HNSCC through immunostaining. The involvement of miR-139-3p (the passenger strand) in the oncogenesis of HNSCC is a new concept in cancer biology. Our miRNA-based strategy will increase knowledge on the molecular pathogenesis of HNSCC.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , MicroRNAs/genética , Oncogenes , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Sequência de Bases , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Perfilação da Expressão Gênica , Neoplasias de Cabeça e Pescoço/patologia , Humanos , MicroRNAs/metabolismo , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
8.
Exp Cell Res ; 376(2): 210-220, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30690028

RESUMO

Cetuximab, an inhibitor of the epidermal growth factor receptor that is used widely to treat human cancers including oral squamous cell carcinoma (OSCC), has characteristic side effects of skin rash and hypomagnesemia. However, the mechanisms of and therapeutic agents for skin rashes and hypomagnesemia are still poorly understood. Our gene expression profiling analyses showed that cetuximab activates the p38 MAPK pathways in human skin cells (human keratinocyte cell line [HaCaT]) and inhibits c-Fos-related signals in human embryonic kidney cells (HEK293). We found that while the p38 inhibitor SB203580 inhibited the expression of p38 MAPK targets in HaCaT cells, flavagline reactivated c-Fos-related factors in HEK293 cells. It is noteworthy that, in addition to not interfering with the effect of cetuximab by both compounds, flavagline has additive effect for OSCC growth inhibition in vivo. Collectively, our results indicate that combination of cetuximab and these potential therapeutic agents for cetuximab-related toxicities could be a promising therapeutic strategy for patients with OSCC.


Assuntos
Antineoplásicos Imunológicos/efeitos adversos , Carcinoma de Células Escamosas/tratamento farmacológico , Cetuximab/efeitos adversos , Inibidores do Crescimento/uso terapêutico , Imidazóis/uso terapêutico , Neoplasias Bucais/tratamento farmacológico , Piridinas/uso terapêutico , Animais , Carcinoma de Células Escamosas/complicações , Linhagem Celular Tumoral , Quimioterapia Combinada , Receptores ErbB/antagonistas & inibidores , Exantema/induzido quimicamente , Exantema/genética , Exantema/prevenção & controle , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes , Inibidores do Crescimento/efeitos adversos , Inibidores do Crescimento/antagonistas & inibidores , Células HEK293 , Humanos , Hipercalciúria/induzido quimicamente , Hipercalciúria/genética , Hipercalciúria/prevenção & controle , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Bucais/complicações , Neoplasias Bucais/genética , Nefrocalcinose/induzido quimicamente , Nefrocalcinose/genética , Nefrocalcinose/prevenção & controle , Erros Inatos do Transporte Tubular Renal/induzido quimicamente , Erros Inatos do Transporte Tubular Renal/genética , Erros Inatos do Transporte Tubular Renal/prevenção & controle , Transcriptoma , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Biochem Biophys Res Commun ; 508(4): 1133-1138, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30554657

RESUMO

Tripartite motif family-like 2 (TRIML2), a member of the TRIM proteins family, is closely related to Alzheimer's disease, however, no studies of TRIML2 have been published in the cancer research literature. In the current study, we investigated the expression level of TRIML2 and its molecular mechanisms in human oral squamous cell carcinoma (OSCC); reverse transcriptase-quantitative polymerase chain reaction, immunoblot analysis, and immunohistochemistry showed that TRIML2 is up-regulated significantly in OSCCs in vitro and in vivo. TRIML2 knockdown OSCC cells showed decreased cellular proliferation by cell-cycle arrest at G1 phase that resulted from down-regulation of CDK4, CDK6, and cyclin D1 and up-regulation of p21Cip1 and p27Kip1. Surprisingly, resveratrol, a polyphenol, led to not only down-regulation of TRIML2 but also cell-cycle arrest at G1 phase similar to TRIML2 knockdown experiments. Taken together, we concluded that TRIML2 might play a significant role in tumoral growth and that resveratrol may be a new drug for treating OSCC by interfering with TRIML2 function.


Assuntos
Proteínas de Transporte/genética , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Proteínas de Transporte/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Resveratrol/farmacologia
10.
Biochem Biophys Res Commun ; 512(3): 486-491, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30905411

RESUMO

Lysyl hydroxylase 2 (LH2) is an endoplasmic reticulum (ER)-resident enzyme that catalyzes the hydroxylation of lysine residues in the telopeptides of fibrillar collagens. This is a critical modification to determine the fate of collagen cross-linking pathway that contributes to the stability of collagen fibrils. Studies have demonstrated that the aberrant LH2 function causes various diseases including osteogenesis imperfecta, fibrosis, and cancer metastasis. However, surprisingly, a LH2-deficient animal model has not been reported. In the current study, to better understand the function of LH2, we generated LH2 gene knockout mice by CRISPR/Cas9 technology. LH2 deficiency was confirmed by genotyping polymerase chain reaction (PCR), reverse transcriptase-PCR, and immunohistochemical analyses. Homozygous LH2 knockout (LH2-/-) embryos failed to develop normally and died at early embryonic stage E10.5 with abnormal common ventricle in a heart, i.e., an insufficient wall, a thin ventricular wall, and loosely packed cells. In the LH2-/- mice, the ER stress-responsive genes, ATF4 and CHOP were significantly up-regulated leading to increased levels of Bax and cleaved caspase-3. These data indicate that LH2 plays an essential role in cardiac development through an ER stress-mediated apoptosis pathway.


Assuntos
Perda do Embrião/genética , Embrião de Mamíferos/patologia , Estresse do Retículo Endoplasmático , Cardiopatias Congênitas/genética , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/genética , Animais , Apoptose , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Perda do Embrião/patologia , Embrião de Mamíferos/metabolismo , Coração/embriologia , Cardiopatias Congênitas/patologia , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA