Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Environ Sci Technol ; 54(4): 2353-2359, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31951124

RESUMO

We present a new method for chemical characterization of micro- and nanoplastics based on thermal desorption-proton transfer reaction-mass spectrometry. The detection limit for polystyrene (PS) obtained is <1 ng of the compound present in a sample, which results in 100 times better sensitivity than those of previously reported by other methods. This allows us to use small volumes of samples (1 mL) and to carry out experiments without a preconcentration step. Unique features in the high-resolution mass spectrum of different plastic polymers make this approach suitable for fingerprinting, even when the samples contain mixtures of other organic compounds. Accordingly, we got a positive fingerprint of PS when just 10 ng of the polymer was present within the dissolved organic matter of snow. Multiple types of microplastics (polyethylene terephthalate (PET), polyvinyl chloride, and polypropylene carbonate), were identified in a snowpit from the Austrian Alps; however, only PET was detected in the nanometer range for both snowpit and surface snow samples. This is in accordance with other publications showing that the dominant form of airborne microplastics is PET fibers. The presence of nanoplastics in high-altitude snow indicates airborne transport of plastic pollution with environmental and health consequences yet to be understood.


Assuntos
Plásticos , Poluentes Químicos da Água , Áustria , Monitoramento Ambiental , Neve
2.
Chemosphere ; 352: 141410, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346510

RESUMO

We report atmospheric fine micro- and nanoplastics concentrations from particulate matter (PM) samples of two size fractions (PM10, fine micro- and nanoplastics, and PM1, nanoplastics), which were collected at the remote high alpine station Sonnblick Observatory, Austria. Active sampling was performed from June 2021 until April 2022. Analysis was done using TD-PTR-MS to detect 6 different plastic types. Polyethylene terephthalate (PET), polyethylene (PE) and polypropylene/polypropylene carbonate (PP/PPC) were found to be the dominating species. PET was detected in almost all samples, while the other plastic types occurred more episodically. Furthermore, polyvinyl chloride (PVC), polystyrene (PS) and tire wear particles were detected in single samples. Considering the three main plastic types, average plastics concentrations were 35 and 21 ng m-³ with maximum concentrations of 165 and 113 ng m-³ for PM10 and PM1, respectively. Average polymer concentrations were higher in the summer/fall period than in winter/spring. In summer/fall, PM10 plastics concentrations were higher by a factor of 2 compared to PM1, while concentrations of both size classes were comparable in the winter/spring period. This suggests that in the colder season plastic particles arriving at the Eastern Alpine crests are mainly present as nanoplastics. The contribution of micro- and nanoplastics to organic matter at the remote site was found to be comparable to data determined at an urban site. We found significant correlations between the PET concentration and tracers originating from anthropogenic activities such as elemental carbon, nitrate, ammonium, and sulphate as well as organic carbon and arabitol.


Assuntos
Poluentes Atmosféricos , Material Particulado , Polipropilenos , Material Particulado/análise , Poluentes Atmosféricos/análise , Microplásticos/análise , Tamanho da Partícula , Áustria , Monitoramento Ambiental , Carbono/análise , Plásticos/análise
3.
Environ Sci Pollut Res Int ; 31(10): 14690-14703, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38280167

RESUMO

Here, we present the results of a comprehensive study of air quality in two tunnels located in the city of Krakow, southern Poland. The study comprised three PM fractions of suspended particulate matter (PM1, PM2.5 and PM10) sampled during campaigns lasting from March 14 to April 24, 2016 and from June 28 to July 18, 2016, in the road tunnel and the tram tunnel, respectively. The collected samples had undergone comprehensive chemical, elemental and carbon isotope analyses. The results of these analyses gave the basis for better characterization of urban transport as a source of air pollution in the city. The concentrations of particulate matter varied, depending on the analysed PM fraction and the place of sampling. For the tram tunnel, the average concentrations were 53.2 µg·m-3 (PM1), 73.8 µg·m-3 (PM2.5), 96.5 µg·m-3 (PM10), to be compared with 44.2 µg·m-3, 137.7 µg·m-3, 221.5 µg·m-3, respectively, recorded in the road tunnel. The isotope-mass balance calculations carried out separately for the road and tram tunnel and for each PM fraction, revealed that 60 to 79% of carbon present in the samples collected in the road tunnel was associated with road transport, to be compared with 15-33% obtained in the tram tunnel. The second in importance were biogenic emissions (17-21% and 41-49% in the road and tram tunnel, respectively. Sixteen different polycyclic aromatic hydrocarbons (PAHs) have been identified in the analysed samples. As expected, much higher concentrations of PAHs were detected in the road tunnel when compared to the tram tunnel. Based on the analysed PAHs concentrations, health risk assessment was determined using 3 different types of indicators: carcinogenic equivalent (CEQ), mutagenic equivalent (MEQ) and toxic equivalent (TEQ).


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Hidrocarbonetos Policíclicos Aromáticos , Material Particulado/análise , Poluentes Atmosféricos/análise , Polônia , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Emissões de Veículos/análise
4.
Sci Rep ; 14(1): 7234, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538757

RESUMO

Air quality is of large concern in the city of Krakow, southern Poland. A comprehensive study was launched by us in which two PM fractions (PM1 and PM10) were sampled during 1-year campaign, lasting from April 21, 2018 to March 19, 2019. A suite of modern analytical methods was used to characterize the chemical composition of the collected samples. The contents of 14 sugars, sugar alcohols and anhydrosugars, 16 polycyclic aromatic hydrocarbons, selected metals and non-metals and ions were analyzed, in addition to organic and elemental carbon content. The carbon isotope composition in both analysed PM fractions, combined with an isotope-mass balance method, allowed to distinguish three main components of carbonaceous emissions in the city: (1) emissions related to combustion of hard coal, (2) emissions related to road transport, and (3) biogenic emissions. The heating season emissions from coal combustion had the biggest contribution to the reservoir of carbonaceous aerosols in the PM10 fraction (44%) and, together with the biogenic emission, they were the biggest contributors to the PM1 fraction (41% and 44%, respectively). In the non-heating season, the dominant source of carbon in PM10 and PM1 fraction were the biogenic emissions (48 and 54%, respectively).

5.
Clin Transl Allergy ; 12(2): e12125, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35169442

RESUMO

BACKGROUND: Growing up on a cattle farm and consuming raw cow's milk protects against asthma and allergies. We expect a cattle-specific protein as active component in this farm effect. METHODS: Dust was collected from cattle and poultry stables and from mattresses of households. Urine was obtained from cattle, and ambient aerosols were sampled. Samples were analysed for BLG by SDS PAGE/immunoblot and mass spectrometry, and for association with metals by SEC-ICP-MS. PBMC of healthy donors were incubated with BLG +/- zinc, and proliferation and cytokines determined. BALB/c mice were pre-treated intranasally with stable dust extract containing BLG or depleted of BLG, and subsequent allergy response after sensitization was evaluated on antibody and symptom level. RESULTS: A major protein in dust from cattle farms and ambient air was identified as BLG. Urine from female and male cattle is a major source of BLG. In dust samples, BLG was associated with zinc. In vitro, zinc-BLG provoked significantly lower proliferation of CD4+ and CD8+ cells while inducing significantly higher levels of IFN-γ and IL-6 than the apo-BLG devoid of zinc. In vivo, pre-treatment of mice with dust extract containing BLG resulted in lower allergy symptom scores to BLG and unrelated Bet v 1 than pre-treatment with extract depleted of BLG. These in vitro and in vivo effects were independent of endotoxin. CONCLUSION: The lipocalin BLG is found in large amounts in cattle urine, accumulates in bovine dust samples and is aerosolized around farms. Its association with zinc favorably shapes the human cellular immune response towards Th1-cytokines in vitro. BLG together with zinc in stable dust protects mice from allergic sensitization. BLG with its associated ligands may in an innate manner contribute to the allergy-protective farm effect.

6.
Front Microbiol ; 11: 980, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508790

RESUMO

We investigated the interactions of air and snow over one entire winter accumulation period as well as the importance of chemical markers in a pristine free-tropospheric environment to explain variation in a microbiological dataset. To overcome the limitations of short term bioaerosol sampling, we sampled the atmosphere continuously onto quartzfiber air filters using a DIGITEL high volume PM10 sampler. The bacterial and fungal communities, sequenced using Illumina MiSeq, as well as the chemical components of the atmosphere were compared to those of a late season snow profile. Results reveal strong dynamics in the composition of bacterial and fungal communities in air and snow. In fall the two compartments were similar, suggesting a strong interaction between them. The overlap diminished as the season progressed due to an evolution within the snowpack throughout winter and spring. Certain bacterial and fungal genera were only detected in air samples, which implies that a distinct air microbiome might exist. These organisms are likely not incorporated in clouds and thus not precipitated or scavenged in snow. Although snow appears to be seeded by the atmosphere, both air and snow showed differing bacterial and fungal communities and chemical composition. Season and alpha diversity were major drivers for microbial variability in snow and air, and only a few chemical markers were identified as important in explaining microbial diversity. Air microbial community variation was more related to chemical markers than snow microbial composition. For air microbial communities Cl-, TC/OC, SO4 2-, Mg2+, and Fe/Al, all compounds related to dust or anthropogenic activities, were identified as related to bacterial variability while dust related Ca2+ was significant in snow. The only common driver for snow and air was SO4 2-, a tracer for anthropogenic sources. The occurrence of chemical compounds was coupled with boundary layer injections in the free troposphere (FT). Boundary layer injections also caused the observed variations in community composition and chemistry between the two compartments. Long-term monitoring is required for a more valid insight in post-depositional selection in snow.

7.
Environ Sci Pollut Res Int ; 27(12): 14124-14137, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32043252

RESUMO

The characterization of saccharidic compounds in atmospheric aerosols is important in order to retrieve information about organic carbon sources and their transport pathways through the atmosphere. In this study, composition and sources of saccharides in PM10 were determined in a South Asian megacity (Faisalabad) during the year 2015 - 2016. PM10 sampled on quartz filters was analyzed by anion exchange chromatography for the selected saccharidic compounds. The average PM10 concentration was found to be 744 ± 392 µg m-3, exceeding the daily limits proposed by Pak-EPA (150 µg m-3), US-EPA (150 µg m-3), and WHO (50 µg m-3). The average total saccharidic concentration was found to be 2820 ± 2247 ng m-3. Among the different saccharidic categories, anhydrosugars were the most abundant in concentration followed by primary sugars and sugar alcohols. The correlation and principal component analysis indicated emissions from biomass combustion, soil suspensions from areas such as farmlands having high microorganism activity, and biogenic emissions such as airborne fungal spores and vegetation detritus as major sources of saccharides in the aerosol samples.


Assuntos
Poluentes Atmosféricos/análise , Material Particulado/análise , Aerossóis/análise , Monitoramento Ambiental , Estações do Ano
8.
Environ Sci Pollut Res Int ; 25(5): 4558-4569, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29188599

RESUMO

This work focuses on the chemical characterization of fine aerosol particles (PM2.5) collected from a rural remote island of the Bay of Bengal (Bhola, Bangladesh) from April to August, 2013. PM2.5 particle-loaded filters were analyzed for organic carbon (OC), elemental carbon (EC), water-soluble ions, and selected saccharides (levoglucosan, mannosan, galactosan, arabitol, and mannitol). The average PM2.5 mass was 15.0 ± 6.9 µg m-3. Organic carbon and elemental carbon comprised roughly half of the analyzed components. Organic carbon was the predominant contributor to total carbon (TC) and accounting for about 28% of PM2.5 mass. Secondary organic carbon (SOC) was inferred to be ~ 26% of OC. The sum of ions comprised ~ 27% of PM2.5 mass. The contribution of sea salt aerosol was smaller than expected for a sea-near site (17%), and very high chloride depletion was observed (78%). NssSO42- was a dominant ionic component with an average concentration of 2.0 µg m-3 followed by Na+, NH4+, and nssCa2+. The average concentration of arabitol and mannitol was 0.11 and 0.14 µg m-3, respectively, while levoglucosan and its stereoisomers (mannosan and galactosan) were bellow detection limit. NH4+/SO42- equivalent ratio was 0.30 ± 0.13 indicating that secondary inorganic aerosol is not the main source of SO42-. Enrichment factor (EF) analysis showed that SO42- and NO3- were enriched in atmospheric particles compared to sea aerosol and soil indicating their anthropogenic origin. Higher OC/EC ratio (3.70 ± 0.88) was a good indicator of the secondary organic compounds formation. Other ratios (OC/EC, K+/EC, nssSO42-/EC) and correlation analysis suggested mixed sources for carbonaceous components. Arabitol and mannitol both showed strong correlation with EC having R 2 value 0.89 and 0.95, respectively. Air mass trajectories analysis showed that concentrations of soil and anthropogenic species were lower for air masses originating from the sea (May-August) and were higher when air came from land (April).


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Material Particulado/química , Aerossóis , Bangladesh , Baías , Carbono/análise , Íons/análise , Ilhas , Monossacarídeos/análise , Compostos Orgânicos/análise , Tamanho da Partícula , Estações do Ano
10.
J Chromatogr A ; 1171(1-2): 37-45, 2007 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-17920614

RESUMO

An improved method is described for the quantification of primary sugars, sugar alcohols and anhydrosugars in atmospheric aerosols, making use of separation by high-performance anion-exchange chromatography (HPAEC) with pulsed amperometric detection (PAD). Quartz fibre filters from high-volume samplers were extracted with water and the extract injected directly. Repeatability is typically 4% RSD, for e.g. levoglucosan at 50 ng m(-3) in air, better for winter levels around 700 ng m(-3). Limits of detection for individual sugars are in the range 0.02-0.05 microg mL(-1) in solution, corresponding to 2-5 ng m(-3) from a 20 m(3) air sample. The overlap of arabitol and levogluocosan is overcome by using a Dionex PA-1 column, with appropriate control of eluent composition, and peak deconvolution software, allowing quantification of both sugars in difficult summer samples containing low-levels of levoglucosan. Analysis of a set of ambient aerosol samples by both GC-flame ionization detection and HPAEC-PAD shows good agreement. The new method has the advantage of requiring no sample pretreatment or derivatization and is thus well suited to handling large numbers of samples.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Resinas de Troca Aniônica/química , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia por Troca Iônica/métodos , Aerossóis/química , Poluentes Atmosféricos/química , Eletroquímica , Galactose/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Manose/química , Monossacarídeos/química , Monossacarídeos/isolamento & purificação , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização por Electrospray/métodos
11.
Sci Rep ; 7(1): 6832, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28754996

RESUMO

Chemical imaging is a powerful tool for understanding the chemical composition and nature of heterogeneous samples. Recent developments in elemental, vibrational, and mass-spectrometric chemical imaging with high spatial resolution (50-200 nm) and reasonable timescale (a few hours) are capable of providing complementary chemical information about various samples. However, a single technique is insufficient to provide a comprehensive understanding of chemically complex materials. For bulk samples, the combination of different analytical methods and the application of statistical methods for extracting correlated information across different techniques is a well-established and powerful concept. However, combined multivariate analytics of chemical images obtained via different imaging techniques is still in its infancy, hampered by a lack of analytical methodologies for data fusion and analysis. This study demonstrates the application of multivariate statistics to chemical images taken from the same sample via various methods to assist in chemical structure determination.

12.
Anal Chem ; 74(1): 91-5, 2002 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-11795823

RESUMO

Airborne fungal spores contribute potentially to the organic carbon of the atmospheric aerosol, mainly in the "coarse aerosol" size range 2.5-10 microm aerodynamic equivalent diameter (aed). Here, we report about a procedure to determine the organic carbon content of fungal spores frequently observed in the atmosphere. Furthermore, we apply a new (carbon/individual) factor to quantify the amount of fungal-spores-derived organic carbon in aerosol collected at a mountain site in Austria. Spores of representatives of Cladosporium sp., Aspergillus sp., Penicillium sp., and Alternaria sp., the four predominant airborne genera, were analyzed for their carbon content using two different analytical procedures. The result was an average carbon content of 13 pg C/spore (RSD, 46%), or expressed as a carbon-per-volume ratio, 0.38 pg C/microm3 (RSD, 30%). These values are comparable to conversion factors for bacteria and some representatives of the zooplankton. Because biopolymers are suspected of interfering with elemental carbon determination by thermal methods, the amount of "fungal carbon" that might be erroneously mistaken for soot carbon was determined using the "two-step combustion" method of Cachier et al. and termed as "apparent elemental carbon" (AEC). This fraction amounted to up to 46% of the initial fungal carbon content. Although the aerosol samples were collected in March under wintry conditions, the organic carbon from fungal spores amounted to 2.9-5.4% of organic carbon in the "coarse mode" size fraction.


Assuntos
Microbiologia do Ar , Carbono/análise , Esporos Fúngicos/química , Aerossóis/análise
13.
J Environ Monit ; 4(2): 205-9, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11993757

RESUMO

Passive samplers were used to monitor ammonia concentrations at rural inner alpine and pre-alpine, as well as urban, sites in Austria and Bavaria. Elevated concentrations were measured both at farms (up to 36 microg NH3 m(-3)) and at urban locations (up to 28 microg NH3 m(-3)). At urban locations a linear relationship between the traffic density and the NH3 concentration was found, but there was no marked seasonal trend. The highest ammonia concentrations were measured in a traffic tunnel (up to 78 microg NH3 m(-3)). The presence of livestock breeding or small scale alpine pastures resulted in elevated concentrations at the rural sites (8.1-12 and 2.5-4.6 microg NH3 m(-3), respectively), compared to the surrounding areas (3.1 and 0.9 microg NH3 m(-3)). Agriculture related sources are usually limited either spatially or seasonally. As the emissions were moderate in our case, a rapid removal and dilution of ammonia was possible and therefore the NH3 burden was only local. Sources related to traffic are more evenly distributed both geographically and seasonally. The WHO guideline, annual average concentration of 8 microg m(-3) for the protection of vegetation, was only exceeded at farms, at the urban station with the heaviest traffic and in the Tauerntunnel.


Assuntos
Poluentes Atmosféricos/análise , Amônia/análise , Monitoramento Ambiental , Emissões de Veículos/análise , Agricultura , Altitude , Animais , Animais Domésticos , Cidades , Cromatografia Gasosa-Espectrometria de Massas , Geografia , Indústrias , Plantas , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA