Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36232475

RESUMO

Cancer is one of the greatest challenges in modern medicine today. Difficult and long-term treatment, the many side effects of the drugs used and the growing resistance to treatment of neoplastic cells necessitate new approaches to therapy. A very promising targeted therapy is based on direct impact only on cancer cells. As a continuation of our research on new biologically active molecules, we report herein the design, synthesis and anticancer evaluation of a new series of N-Mannich-base-type hybrid compounds containing morfoline or different substituted piperazines moieties, a 1,3,4-oxadiazole ring and a 4,6-dimethylpyridine core. All compounds were tested for their potential cytotoxicity against five human cancer cell lines, A375, C32, SNB-19, MCF-7/WT and MCF-7/DX. Two of the active N-Mannich bases (compounds 5 and 6) were further evaluated for growth inhibition effects in melanoma (A375 and C32), and normal (HaCaT) cell lines using clonogenic assay and a population doubling time test. The apoptosis was determined with the neutral version of comet assay. The confocal microscopy method enabled the visualization of F-actin reorganization. The obtained results demonstrated that compounds 5 and 6 have cytotoxic and proapoptotic effects on melanoma cells and are capable of inducing F-actin depolarization in a dose-dependent manner. Moreover, computational chemistry approaches, molecular docking and electrostatic potential were employed to study non-covalent interactions of the investigated compounds with four receptors. It was found that all the examined molecules exhibit a similar binding affinity with respect to the chosen reference drugs.


Assuntos
Antineoplásicos , Melanoma , Actinas , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Bases de Mannich/química , Bases de Mannich/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Oxidiazóis , Piperazinas/farmacologia , Relação Estrutura-Atividade
2.
Molecules ; 27(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35566044

RESUMO

Breast cancer is one of the most common malignant neoplasms, and despite the dynamic development of anticancer therapies, 5-year survival in the metastatic stage is still less than 30%. 6-Gingerol (1-[4'-hydroxy-3'-methoxyphenyl]-5-hydroxy-3-decanone) is a substance contained in ginger, which exhibits anti-cancer properties. Paclitaxel is a cytostatic substance used to treat breast cancer, but its therapeutically effective dose has many adverse effects. The aim of the presented study was to assess the anticancer effect of 6-gingerol and the possibility of increasing the effectiveness of Paclitaxel in the death induction of wild type human breast cancer cells. MCF-7/WT cells were treated with drugs-6-gingerol and paclitaxel at selected concentrations. The mitochondrial activity assay, caspase 7 activity assay, ATP assay, microscopy studies, and RT-PCR assays were performed to evaluate the antitumor activity and mechanism of action of both compounds, alone and in combination. After 72 h of incubation, the mitochondrial activity showed that the combination of 5 nM Paclitaxel with 10 µM 6-Gingerol led to the same decrease in viability as the use of 20 nM Paclitaxel alone; 10 µM 6-Gingerol led to an enhancement of caspase 7 activity, with the highest activity observed after 24 h of incubation. A real-time PCR study showed that 6-Gingerol induces the simultaneous transcription of Bax with TP53 genes in large excess to BCL-2. In contrast, 5 nM Paclitaxel induces TP53 transcription in excess of BCL-2 and Bax. Our results suggest that 6-Gingerol may act as a cell death-inducing agent in cancer cells and, in combination with paclitaxel, and increase the effectiveness of conventional chemotherapy.


Assuntos
Adenocarcinoma , Neoplasias da Mama , Apoptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Caspase 7 , Catecóis , Linhagem Celular Tumoral , Álcoois Graxos , Feminino , Humanos , Paclitaxel , Proteína X Associada a bcl-2
3.
Biochim Biophys Acta Biomembr ; 1864(12): 184055, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36152727

RESUMO

Pulsed electric fields (PEFs) are commonly used to facilitate the delivery of various molecules, including pharmaceuticals, into living cells. However, the applied protocols still require optimization regarding the conditions of the permeabilization process, i.e., pulse waveform, voltage, duration, and the number of pulses in a burst. This study highlights the importance of electrochemical processes involved in the electropermeabilization process, known as electroporation. This research investigated the effects of electroporation on human non-small cell lung cancer cells (A549) in potassium (SKM) and HEPES-based buffers (SHM) using sub-microsecond and microsecond range pulses. The experiments were performed using 100 ns - 100 µs (0.6-15 kV/cm) bursts with 8 pulses in a sequence. It was shown that depending on the buffer composition, the susceptibility of cells to PEF varies, while calcium enhances the cytotoxic effects of PEF, if high cell membrane permeabilization is triggered. It was also determined that electroporation with calcium ions induces oxidative stress in cells, including lipid peroxidation (LPO), generation of reactive oxygen species (ROS), and neutral lipid droplets. Here, we demonstrated that calcium ions and optimized pulse parameters could potentiate PEF efficacy and oxidative alternations in lung cancer cells. Thus, the anticancer efficacy of PEF in lung cancers in combination with standard cytostatic drugs or calcium ions should be considered, but this issue still requires in-depth detailed studies with in vivo models.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Citostáticos , Neoplasias Pulmonares , Cálcio , HEPES , Humanos , Íons , Peroxidação de Lipídeos , Estresse Oxidativo , Preparações Farmacêuticas , Potássio , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA