Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 590
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int Immunol ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564192

RESUMO

IgG molecules that bind antigen on the membrane of target cells spontaneously form hexameric rings, thus recruiting C1 to initiate the complement pathway. However, our previous report indicated that a mouse IgG mutant lacking the Cγ1 domain activates the pathway independently of antigen presence through its monomeric interaction with C1q via the CL domain, as well as Fc. In this study, we investigated the potential interaction between C1q and human CL isoforms. Quantitative single molecule observations using high-speed atomic force microscopy revealed that human Cκ exhibited comparable C1q binding capabilities with its mouse counterpart, surpassing the Cλ types, which have a higher isoelectric point than the Cκ domains. Nuclear magnetic resonance and mutation experiments indicated that the human and mouse Cκ domains share a common primary binding site for C1q, centered on Glu194, a residue conserved in the Cκ domains but absent in the Cλ domains. Additionally, the Cγ1 domain, with its high isoelectric point, can cause electrostatic repulsion to the C1q head and impede the C1q-interaction adjustability of the Cκ domain in Fab. The removal of the Cγ1 domain is considered to eliminate these factors and thus promote Cκ interaction with C1q with the potential risk of uncontrolled activation of the complement pathway in vivo in the absence of antigen. However, this research underscores the presence of potential subsites in Fab for C1q binding, offering promising targets for antibody engineering to refine therapeutic antibody design.

2.
Int Arch Allergy Immunol ; : 1-12, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38797160

RESUMO

INTRODUCTION: Kamebakaurin is an active constituent of both Rabdosia japonica and Rabdosia excisa, which are utilized in Chinese traditional medicine for improving symptoms in patients with allergies. We investigated the molecular mechanisms of the anti-allergic effects of kamebakaurin using BMMCs. METHODS: The degranulation ratio, histamine release, and the interleukin (IL)-4, leukotriene B4 (LTB4), and cysteinyl leukotriene productions on antigen-triggered BMMC were investigated. Additionally, the effects of kamebakaurin on signal transduction proteins were examined by Western blot and binding to the Syk and Lyn kinase domain was calculated. The effects of kamebakaurin on antigen-induced hyperpermeability were investigated using mouse model. RESULTS: At 10 µm, kamebakaurin partially inhibited degranulation, histamine release, and IL-4 production. At 30 µm, kamebakaurin partially reduced LTB4 and cysteinyl leukotriene productions and suppressed degranulation, histamine release, and IL-4 production. Phosphorylation of both Syk Y519/520 and its downstream protein, Gab2, was reduced by kamebakaurin, and complete inhibition was observed with 30 µm kamebakaurin. In contrast, phosphorylation of Erk was only partially inhibited, even in the presence of 30 µm kamebakaurin. Syk Y519/520 is known to be auto-phosphorylated via intramolecular ATP present in its own ATP-binding site, and this auto-phosphorylation triggers degranulation, histamine release, and IL-4 production. Docking simulation study indicated kamebakaurin blocked ATP binding to the ATP-binding site in Syk. Therefore, inhibition of Syk auto-phosphorylation by kamebakaurin binding to the Syk ATP-binding site appeared to cause a reduction of histamine release and IL-4 production. Kamebakaurin inhibited antigen-induced vascular hyperpermeability in a dose-dependent fashion but did not reduce histamine-induced vascular hyperpermeability. CONCLUSION: Kamebakaurin ameliorates allergic symptoms via inhibition of Syk phosphorylation; thus, kamebakaurin could be a lead compound for the new anti-allergic drug.

3.
Biol Pharm Bull ; 47(5): 967-977, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38763751

RESUMO

Ensitrelvir is a noncovalent inhibitor of the main protease (Mpro) of severe acute respiratory syndrome coronavirus 2. Acquisition of drug resistance in virus-derived proteins is a serious therapeutic concern, and drug resistance occurs due to amino acid mutations. In this study, we computationally constructed 24 mutants, in which one residue around the active site was replaced with alanine and performed molecular dynamics simulations to the complex of Mpro and ensitrelvir to predict the residues involved in drug resistance. We evaluated the changes in the entire protein structure and ligand configuration in each of these mutants and estimated which residues were involved in ensitrelvir recognition. This method is called a virtual alanine scan. In nine mutants (S1A, T26A, H41A, M49A, L141A, H163A, E166A, V186A, and R188A), although the entire protein structure and catalytic dyad (cysteine (Cys)145 and histidine (His)41) were not significantly moved, the ensitrelvir configuration changed. Thus, it is considered that these mutants did not recognize ensitrelvir while maintaining Mpro enzymatic activities, and Ser1, Thr26, His41, Met49, Leu141, His163, Glu166, Val186, and Arg188 may be related to ensitrelvir resistance. The ligand shift noted in M49A was similar to that observed in M49I, which has been shown to be experimentally ensitrelvir resistant. These findings suggest that our research approach can predict mutations that incite drug resistance.


Assuntos
Alanina , Domínio Catalítico , Proteases 3C de Coronavírus , Farmacorresistência Viral , Simulação de Dinâmica Molecular , SARS-CoV-2 , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/genética , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , SARS-CoV-2/efeitos dos fármacos , Alanina/genética , Farmacorresistência Viral/genética , Humanos , Mutação , Tratamento Farmacológico da COVID-19 , Inibidores de Proteases/farmacologia , Indazóis , Triazinas , Triazóis
4.
Biol Pharm Bull ; 47(3): 620-628, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38479886

RESUMO

One of the members of CYP, a monooxygenase, CYP2A13 is involved in the metabolism of nicotine, coumarin, and tobacco-specific nitrosamine. Genetic polymorphisms have been identified in CYP2A13, with reported loss or reduction in enzymatic activity in CYP2A13 allelic variants. This study aimed to unravel the mechanism underlying the diminished enzymatic activity of CYP2A13 variants by investigating their three-dimensional structures through molecular dynamics (MD) simulations. For each variant, MD simulations of 1000 ns were performed, and the obtained results were compared with those of the wild type. The findings indicated alterations in the interaction with heme in CYP2A13.4, .6, .8, and .9. In the case of CYP2A13.5, observable effects on the helix structure related to the interaction with the redox partner were identified. These conformational changes were sufficient to cause a decrease in enzyme activity in the variants. Our findings provide valuable insights into the molecular mechanisms associated with the diminished activity in the CYP2A13 polymorphisms.


Assuntos
Simulação de Dinâmica Molecular , Nitrosaminas , Polimorfismo Genético , Nicotina , Oxirredução , Citocromo P-450 CYP2A6/genética
5.
Biol Pharm Bull ; 47(1): 334-338, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38143078

RESUMO

This study employed high-speed atomic force microscopy to quantitatively analyze the interactions between therapeutic antibodies and Fcγ receptors (FcγRs). Antibodies are essential components of the immune system and are integral to biopharmaceuticals. The focus of this study was on immunoglobulin G molecules, which are crucial for antigen binding via the Fab segments and cytotoxic functions through their Fc portions. We conducted real-time, label-free observations of the interactions of rituximab and mogamulizumab with the recombinant FcγRIIIa and FcγRIIa. The dwell times of FcγR binding were measured at the single-molecule level, which revealed an extended interaction duration of mogamulizumab with FcγRIIIa compared with that of rituximab. This is linked to enhanced antibody-dependent cellular cytotoxicity that is attributed to the absence of the core fucosylation of Fc-linked N-glycan. This study also emphasizes the crucial role of the Fab segments in the interaction with FcγRIIa as well as that with FcγRIIIa. This approach provided quantitative insight into therapeutic antibody interactions and exemplified kinetic proofreading, where cellular discrimination relies on ligand residence times. Observing the dwell times of antibodies on the effector molecules has emerged as a robust indicator of therapeutic antibody efficacy. Ultimately, these findings pave the way for the development of refined therapeutic antibodies with tailored interactions with specific FcγRs. This research contributes to the advancement of biopharmaceutical antibody design and optimizing antibody-based treatments for enhanced efficacy and precision.


Assuntos
Imunoglobulina G , Receptores de IgG , Receptores de IgG/química , Receptores de IgG/metabolismo , Rituximab/farmacologia , Microscopia de Força Atômica , Ligação Proteica , Fatores Imunológicos , Proteínas de Transporte/metabolismo
6.
Int J Mol Sci ; 25(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38791456

RESUMO

Presenilin proteins (PS1 and PS2) represent the catalytic subunit of γ-secretase and play a critical role in the generation of the amyloid ß (Aß) peptide and the pathogenesis of Alzheimer disease (AD). However, PS proteins also exert multiple functions beyond Aß generation. In this study, we examine the individual roles of PS1 and PS2 in cellular cholesterol metabolism. Deletion of PS1 or PS2 in mouse models led to cholesterol accumulation in cerebral neurons. Cholesterol accumulation was also observed in the lysosomes of embryonic fibroblasts from Psen1-knockout (PS1-KO) and Psen2-KO (PS2-KO) mice and was associated with decreased expression of the Niemann-Pick type C1 (NPC1) protein involved in intracellular cholesterol transport in late endosomal/lysosomal compartments. Mass spectrometry and complementary biochemical analyses also revealed abnormal N-glycosylation of NPC1 and several other membrane proteins in PS1-KO and PS2-KO cells. Interestingly, pharmacological inhibition of N-glycosylation resulted in intracellular cholesterol accumulation prominently in lysosomes and decreased NPC1, thereby resembling the changes in PS1-KO and PS2-KO cells. In turn, treatment of PS1-KO and PS2-KO mouse embryonic fibroblasts (MEFs) with the chaperone inducer arimoclomol partially normalized NPC1 expression and rescued lysosomal cholesterol accumulation. Additionally, the intracellular cholesterol accumulation in PS1-KO and PS2-KO MEFs was prevented by overexpression of NPC1. Collectively, these data indicate that a loss of PS function results in impaired protein N-glycosylation, which eventually causes decreased expression of NPC1 and intracellular cholesterol accumulation. This mechanism could contribute to the neurodegeneration observed in PS KO mice and potentially to the pathogenesis of AD.


Assuntos
Colesterol , Fibroblastos , Lisossomos , Camundongos Knockout , Proteína C1 de Niemann-Pick , Presenilina-1 , Presenilina-2 , Animais , Colesterol/metabolismo , Camundongos , Glicosilação , Presenilina-1/genética , Presenilina-1/metabolismo , Lisossomos/metabolismo , Presenilina-2/metabolismo , Presenilina-2/genética , Fibroblastos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neurônios/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia
7.
Biochemistry ; 62(11): 1679-1688, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37155656

RESUMO

Crystallin aggregation in the eye lens is involved in the pathogenesis of cataracts. The aggregation is considered to be promoted by non-enzymatic post-translational modifications, such as the deamidation and stereoinversion of amino acid residues. Although in a previous study, the deamidated asparagine residues were detected in γS-crystallin in vivo, it is unclear which deamidated residues have the most impact on the aggregation under physiological conditions. In this study, we investigated the deamidation impacts of all Asn residues in γS-crystallin for the structural and aggregation properties utilizing deamidation mimetic mutants (N14D, N37D, N53D, N76D, and N143D). The structural impacts were investigated using circular dichroism analysis and molecular dynamics simulations, and the aggregation properties were analyzed by gel filtration chromatography and spectrophotometric methods. No significant structural impacts of all mutations were detected. However, the N37D mutation decreased thermal stability and changed some intermolecular hydrogen-bond formations. Aggregation analysis indicated that the superiority of the aggregation rate in each mutant varied with temperature. Deamidation at any Asn residues promoted γS-crystallin aggregation, and the deamidation at Asn37, Asn53, and Asn76 were suggested to be the most impactful in the formation of insoluble aggregations.


Assuntos
Catarata , Cristalino , gama-Cristalinas , Humanos , Asparagina/química , gama-Cristalinas/química , Mutação , Catarata/metabolismo , Cristalino/metabolismo
8.
J Biol Chem ; 298(6): 101950, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35447118

RESUMO

Asparagine-linked glycosylation (N-glycosylation) of proteins in the cancer secretome has been gaining increasing attention as a potential biomarker for cancer detection and diagnosis. Small extracellular vesicles (sEVs) constitute a large part of the cancer secretome, yet little is known about whether their N-glycosylation status reflects known cancer characteristics. Here, we investigated the N-glycosylation of sEVs released from small-cell lung carcinoma (SCLC) and non-small-cell lung carcinoma (NSCLC) cells. We found that the N-glycans of SCLC-sEVs were characterized by the presence of structural units also found in the brain N-glycome, while NSCLC-sEVs were dominated by typical lung-type N-glycans with NSCLC-associated core fucosylation. In addition, lectin-assisted N-glycoproteomics of SCLC-sEVs and NSCLC-sEVs revealed that integrin αV was commonly expressed in sEVs of both cancer cell types, while the epithelium-specific integrin α6ß4 heterodimer was selectively expressed in NSCLC-sEVs. Importantly, N-glycomics of the immunopurified integrin α6 from NSCLC-sEVs identified NSCLC-type N-glycans on this integrin subunit. Thus, we conclude that protein N-glycosylation in lung cancer sEVs may potentially reflect the histology of lung cancers.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Glicosilação , Neoplasias Pulmonares , Processamento de Proteína Pós-Traducional , Carcinoma de Pequenas Células do Pulmão , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Vesículas Extracelulares/metabolismo , Humanos , Neoplasias Pulmonares/patologia , Polissacarídeos/metabolismo , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia
9.
Circulation ; 145(5): 333-344, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34874747

RESUMO

BACKGROUND: Symptomatic children with catecholaminergic polymorphic ventricular tachycardia (CPVT) are at risk for recurrent arrhythmic events. ß-Blockers decrease this risk, but studies comparing individual ß-blockers in sizeable cohorts are lacking. We aimed to assess the association between risk for arrhythmic events and type of ß-blocker in a large cohort of symptomatic children with CPVT. METHODS: From 2 international registries of patients with CPVT, RYR2 variant-carrying symptomatic children (defined as syncope or sudden cardiac arrest before ß-blocker initiation and age at start of ß-blocker therapy <18 years), treated with a ß-blocker were included. Cox regression analyses with time-dependent covariates for ß-blockers and potential confounders were used to assess the hazard ratio (HR). The primary outcome was the first occurrence of sudden cardiac death, sudden cardiac arrest, appropriate implantable cardioverter-defibrillator shock, or syncope. The secondary outcome was the first occurrence of any of the primary outcomes except syncope. RESULTS: We included 329 patients (median age at diagnosis, 12 [interquartile range, 7-15] years, 35% females). Ninety-nine (30.1%) patients experienced the primary outcome and 74 (22.5%) experienced the secondary outcome during a median follow-up of 6.7 (interquartile range, 2.8-12.5) years. Two-hundred sixteen patients (66.0%) used a nonselective ß-blocker (predominantly nadolol [n=140] or propranolol [n=70]) and 111 (33.7%) used a ß1-selective ß-blocker (predominantly atenolol [n=51], metoprolol [n=33], or bisoprolol [n=19]) as initial ß-blocker. Baseline characteristics did not differ. The HRs for both the primary and secondary outcomes were higher for ß1-selective compared with nonselective ß-blockers (HR, 2.04 [95% CI, 1.31-3.17]; and HR, 1.99 [95% CI, 1.20-3.30], respectively). When assessed separately, the HR for the primary outcome was higher for atenolol (HR, 2.68 [95% CI, 1.44-4.99]), bisoprolol (HR, 3.24 [95% CI, 1.47-7.18]), and metoprolol (HR, 2.18 [95% CI, 1.08-4.40]) compared with nadolol, but did not differ from propranolol. The HR of the secondary outcome was only higher in atenolol compared with nadolol (HR, 2.68 [95% CI, 1.30-5.55]). CONCLUSIONS: ß1-selective ß-blockers were associated with a significantly higher risk for arrhythmic events in symptomatic children with CPVT compared with nonselective ß-blockers, specifically nadolol. Nadolol, or propranolol if nadolol is unavailable, should be the preferred ß-blocker for treating symptomatic children with CPVT.


Assuntos
Antagonistas Adrenérgicos beta/uso terapêutico , Taquicardia Ventricular/tratamento farmacológico , Adolescente , Antagonistas Adrenérgicos beta/farmacologia , Criança , Estudos de Coortes , Feminino , Humanos , Masculino
10.
Europace ; 25(4): 1491-1499, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36861347

RESUMO

AIMS: More than one-third of type 2 long QT syndrome (LQT2) patients carry KCNH2 non-missense variants that can result in haploinsufficiency (HI), leading to mechanistic loss-of-function. However, their clinical phenotypes have not been fully investigated. The remaining two-thirds of patients harbour missense variants, and past studies uncovered that most of these variants cause trafficking deficiency, resulting in different functional changes: either HI or dominant-negative (DN) effects. In this study, we examined the impact of altered molecular mechanisms on clinical outcomes in LQT2 patients. METHODS AND RESULTS: We included 429 LQT2 patients (234 probands) carrying a rare KCNH2 variant from our patient cohort undergoing genetic testing. Non-missense variants showed shorter corrected QT (QTc) and less arrhythmic events (AEs) than missense variants. We found that 40% of missense variants in this study were previously reported as HI or DN. Non-missense and HI-groups had similar phenotypes, while both exhibited shorter QTc and less AEs than the DN-group. Based on previous work, we predicted the functional change of the unreported variants-whether they cause HI or DN via altered functional domains-and stratified them as predicted HI (pHI)- or pDN-group. The pHI-group including non-missense variants exhibited milder phenotypes compared to the pDN-group. Multivariable Cox model showed that the functional change was an independent risk of AEs (P = 0.005). CONCLUSION: Stratification based on molecular biological studies enables us to better predict clinical outcomes in the patients with LQT2.


Assuntos
Síndrome do QT Longo , Humanos , Canal de Potássio ERG1/genética , Síndrome do QT Longo/diagnóstico , Síndrome do QT Longo/genética , Mutação de Sentido Incorreto , Testes Genéticos , Arritmias Cardíacas
11.
Circ J ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38044147

RESUMO

BACKGROUND: This study was performed to clarify the clinical findings of pediatric patients diagnosed with long QT syndrome (LQTS) through electrocardiographic screening programs and to predict their outcome using Holter electrocardiographic approaches.Methods and Results: This retrospective study included pediatric patients with a Schwartz score of ≥3.5 who visited the National Hospital Organization Kagoshima Medical Center between April 2005 and March 2019. Resting 12-lead and Holter electrocardiograms were recorded at every visit. The maximum resting QTc and maximum Holter QTc values among all recordings were used for statistical analyses. To test the prognostic value of QTc for the appearance of cardiac events after the first hospital visit, receiver operating characteristic curves were used to calculate the area under the curve (AUC). Among 207 patients, 181 (87%) were diagnosed through screening programs. The prevalence of cardiac events after the first hospital visit was 4% (8/207). Among QTc at diagnosis, maximum resting QTc, and maximum Holter QTc, only maximum Holter QTc value was a predictor (P=0.02) of cardiac events after the hospital visit in multivariate regression analysis. The AUC of the maximum Holter QTc was significantly superior to that of maximum resting QTc. CONCLUSIONS: The maximum Holter QTc value can be used to predict the appearance of symptoms in pediatric patients with LQTS.

12.
Circ J ; 87(12): 1828-1835, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-37380439

RESUMO

BACKGROUND: Cardiac calmodulinopathy, characterized by a life-threatening arrhythmia and sudden death in the young, is extremely rare and caused by genes encoding calmodulin, namely calmodulin 1 (CALM1), CALM2, and CALM3.Methods and Results: We screened 195 symptomatic children (age 0-12 years) who were suspected of inherited arrhythmias for 48 candidate genes, using a next-generation sequencer. Ten probands were identified as carrying variants in any of CALM1-3 (5%; median age 5 years), who were initially diagnosed with long QT syndrome (LQTS; n=5), catecholaminergic polymorphic ventricular tachycardia (CPVT; n=3), and overlap syndrome (n=2). Two probands harbored a CALM1 variant and 8 probands harbored 6 CALM2 variants. There were 4 clinical phenotypes: (1) documented lethal arrhythmic events (LAEs): 4 carriers of N98S in CALM1 or CALM2; (2) suspected LAEs: CALM2 p.D96G and D132G carriers experienced syncope and transient cardiopulmonary arrest under emotional stimulation; (3) critical cardiac complication: CALM2 p.D96V and p.E141K carriers showed severe cardiac dysfunction with QTc prolongation; and (4) neurological and developmental disorders: 2 carriers of CALM2 p.E46K showed cardiac phenotypes of CPVT. Beta-blocker therapy was effective in all cases except cardiac dysfunction, especially in combination with flecainide (CPVT-like phenotype) and mexiletine (LQTS-like). CONCLUSIONS: Calmodulinopathy patients presented severe cardiac features, and their onset of LAEs was earlier in life, requiring diagnosis and treatment at the earliest age possible.


Assuntos
Arritmias Cardíacas , Calmodulina , Síndrome do QT Longo , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Arritmias Cardíacas/genética , Calmodulina/genética , Calmodulina/metabolismo , População do Leste Asiático , Síndrome do QT Longo/diagnóstico , Síndrome do QT Longo/genética , Fenótipo , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/genética , Morte Súbita Cardíaca/etiologia
13.
Chem Pharm Bull (Tokyo) ; 71(7): 545-551, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37394603

RESUMO

We designed and synthesized a chiral ligand N-(anthracen-9-ylmethyl)-1-(pyridin-2-yl)-N-(pyridin-2-ylmethyl)ethanamine (APPE) DNA photocleavage agent to investigate the effects of chirality of bis(2-picolyl)amine on the DNA photocleavage activity of metal complexes. The structures of ZnII and CoII complexes in APPE were analyzed via X-ray crystallography and fluorometric titration. APPE formed metal complexes with a 1 : 1 stoichiometry in both the crystalline and solution states. Fluorometric titration was used to show that the ZnII and CoII association constants of these complexes (log Kas) were 4.95 and 5.39, respectively. The synthesized complexes were found to cleave pUC19 plasmid DNA when irradiated at 370 nm. The DNA photocleavage activity of the ZnII complex was higher than that of the CoII complex. The absolute configuration of the methyl-attached carbon did not affect DNA cleavage activity and, unfortunately, an achiral APPE derivative without the methyl group (ABPM) was found to perform DNA photocleavage more effectively than APPE. One reason for this may be that the methyl group suppressed the structural flexibility of the photosensitizer. These results will be useful for the design of new photoreactive reagents.


Assuntos
Complexos de Coordenação , Zinco , Zinco/química , Cobalto/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Cobre/química , Aminas/química , DNA/química , Cristalografia por Raios X , Ligantes
14.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37047047

RESUMO

In multidomain proteins, individual domains connected by flexible linkers are dynamically rearranged upon ligand binding and sensing changes in environmental factors, such as pH and temperature. Here, we characterize dynamic domain rearrangements of Lys48-linked ubiquitin (Ub) chains as models of multidomain proteins in which molecular surfaces mediating intermolecular interactions are involved in intramolecular domain-domain interactions. Using NMR and other biophysical techniques, we characterized dynamic conformational interconversions of diUb between open and closed states regarding solvent exposure of the hydrophobic surfaces of each Ub unit, which serve as binding sites for various Ub-interacting proteins. We found that the hydrophobic Ub-Ub interaction in diUb was reinforced by cysteine substitution of Lys48 of the distal Ub unit because of interaction between the cysteinyl thiol group and the C-terminal segment of the proximal Ub unit. In contrast, the replacement of the isopeptide linker with an artificial ethylenamine linker minimally affected the conformational distributions. Furthermore, we demonstrated that the mutational modification allosterically impacted the exposure of the most distal Ub unit in triUb. Thus, the conformational interconversion of Ub chains offers a unique design framework in Ub-based protein engineering not only for developing biosensing probes but also for allowing new opportunities for the allosteric regulation of multidomain proteins.


Assuntos
Proteínas , Ubiquitina , Ubiquitina/metabolismo , Conformação Proteica , Mutação , Sítios de Ligação
15.
Int J Mol Sci ; 24(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37629048

RESUMO

Multidomain proteins can exhibit sophisticated functions based on cooperative interactions and allosteric regulation through spatial rearrangements of the multiple domains. This study explored the potential of using multidomain proteins as a basis for Förster resonance energy transfer (FRET) biosensors, focusing on protein disulfide isomerase (PDI) as a representative example. PDI, a well-studied multidomain protein, undergoes redox-dependent conformational changes, enabling the exposure of a hydrophobic surface extending across the b' and a' domains that serves as the primary binding site for substrates. Taking advantage of the dynamic domain rearrangements of PDI, we developed FRET-based biosensors by fusing the b' and a' domains of thermophilic fungal PDI with fluorescent proteins as the FRET acceptor and donor, respectively. Both experimental and computational approaches were used to characterize FRET efficiency in different redox states. In vitro and in vivo evaluations demonstrated higher FRET efficiency of this biosensor in the oxidized form, reflecting the domain rearrangement and its responsiveness to intracellular redox environments. This novel approach of exploiting redox-dependent domain dynamics in multidomain proteins offers promising opportunities for designing innovative FRET-based biosensors with potential applications in studying cellular redox regulation and beyond.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Isomerases de Dissulfetos de Proteínas , Isomerases de Dissulfetos de Proteínas/genética , Regulação Alostérica , Sítios de Ligação , Oxirredução
16.
Glycobiology ; 32(8): 646-650, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35452093

RESUMO

High-performance liquid chromatography (HPLC) elution data provide a useful tool for quantitative glycosylation profiling, discriminating isomeric oligosaccharides. The web application Glycoanalysis by the Three Axes of MS and Chromatography (GALAXY), which is based on the three-dimensional HPLC map of N-linked oligosaccharides with pyridyl-2-amination developed by Dr. Noriko Takahashi, has been extensively used for N-glycosylation profiling at molecular, cellular, and tissue levels. Herein, we describe the updated GALAXY as version 3, which includes new HPLC data including those of glucuronylated and sulfated glycans, an improved graphical user interface using modern technologies, and linked to glycan information in GlyTouCan and the GlyCosmos Portal. This liaison will facilitate glycomic analyses of human and other organisms in conjunction with multiomics data.


Assuntos
Oligossacarídeos , Polissacarídeos , Cromatografia Líquida de Alta Pressão/métodos , Glicosilação , Humanos , Oligossacarídeos/química , Polissacarídeos/química
17.
BMC Genomics ; 23(1): 405, 2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35643424

RESUMO

BACKGROUND: Tardigrades are microscopic animals that are capable of tolerating extreme environments by entering a desiccated state of suspended animation known as anhydrobiosis. While antioxidative stress proteins, antiapoptotic pathways and tardigrade-specific intrinsically disordered proteins have been implicated in the anhydrobiotic machinery, conservation of these mechanisms is not universal within the phylum Tardigrada, suggesting the existence of overlooked components. RESULTS: Here, we show that a novel Mn-dependent peroxidase is an important factor in tardigrade anhydrobiosis. Through time-series transcriptome analysis of Ramazzottius varieornatus specimens exposed to ultraviolet light and comparison with anhydrobiosis entry, we first identified several novel gene families without similarity to existing sequences that are induced rapidly after stress exposure. Among these, a single gene family with multiple orthologs that is highly conserved within the phylum Tardigrada and enhances oxidative stress tolerance when expressed in human cells was identified. Crystallographic study of this protein suggested Zn or Mn binding at the active site, and we further confirmed that this protein has Mn-dependent peroxidase activity in vitro. CONCLUSIONS: Our results demonstrated novel mechanisms for coping with oxidative stress that may be a fundamental mechanism of anhydrobiosis in tardigrades. Furthermore, localization of these sets of proteins mainly in the Golgi apparatus suggests an indispensable role of the Golgi stress response in desiccation tolerance.


Assuntos
Tardígrados , Animais , Peroxidases/genética , Tardígrados/genética , Fatores de Tempo , Transcriptoma , Raios Ultravioleta/efeitos adversos
18.
J Biomol NMR ; 76(1-2): 17-22, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34978013

RESUMO

Mammalian cells are widely used for producing recombinant glycoproteins of pharmaceutical interest. However, a major drawback of using mammalian cells is the high production costs associated with uniformly isotope-labeled glycoproteins due to the large quantity of labeled L-glutamine required for their growth. To address this problem, we developed a cost-saving method for uniform isotope labeling by cultivating the mammalian cells under glutamine-free conditions, which was achieved by co-expression of glutamine synthase. We demonstrate the utility of this approach using fucosylated and non-fucosylated Fc glycoforms of human immunoglobulin G1.


Assuntos
Glutamina , Glicoproteínas , Animais , Glicoproteínas/química , Humanos , Imunoglobulinas , Marcação por Isótopo/métodos , Mamíferos , Ressonância Magnética Nuclear Biomolecular , Proteínas Recombinantes/química
19.
Ann Surg Oncol ; 29(11): 7135-7146, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35543908

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is highly recurrent. Cancer-associated fibroblasts (CAFs), a major component of the tumor microenvironment, promote malignancy; however, the mechanisms underlying their actions are obscure. We aimed to identify CAF-specific proteins in HCC and determine whether they could be potential therapeutic targets. METHODS: Using comprehensive proteomic analysis of CAFs and noncancerous fibroblasts (NFs) primary-cultured from resected HCC specimens from the same patients, CAF-specific proteins were identified. Immunohistochemistry for versican (VCAN) was performed on cancerous tissues obtained from 239 patients with HCC. Conditioned medium from CAFs transfected with siRNA for VCAN was analyzed in vitro. RESULTS: CAFs significantly promoted HCC cell proliferation, migration, and invasion (p < 0.01, 0.01, and 0.01, respectively) compared with NFs. VCAN was upregulated in CAFs, and its stromal level correlated with poor differentiation (p = 0.009) and positive vascular invasion (p = 0.003). Stromal VCAN level was also associated with significantly lower overall (p = 0.002) and relapse-free (p < 0.001) survival rates. It also independently predicted prognosis and recurrence. VCAN-knockdown CAFs significantly suppressed HCC cell migration and invasion compared with negative control. CONCLUSIONS: VCAN secreted from CAFs promoted malignant transformation of HCC cells and has potential as a new therapeutic target in HCC.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Hepatocelular , Neoplasias Hepáticas , Fibroblastos Associados a Câncer/patologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Fatores Imunológicos/metabolismo , Neoplasias Hepáticas/patologia , Linfotoxina-beta/metabolismo , Recidiva Local de Neoplasia/patologia , Prognóstico , Proteômica , RNA Interferente Pequeno , Microambiente Tumoral , Versicanas/metabolismo
20.
Glycoconj J ; 39(2): 219-228, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35298725

RESUMO

On cell surfaces, carbohydrate chains that modify proteins and lipids mediate various biological functions, which are exerted not only through carbohydrate-protein interactions but also through carbohydrate-carbohydrate interactions. These glycans exhibit considerable degrees of conformational variability and often form clusters providing multiple binding sites. The integration of nuclear magnetic resonance spectroscopy and molecular dynamics simulation has made it possible to delineate the dynamical structures of carbohydrate chains. This approach has facilitated the remodeling of oligosaccharide conformational space in the prebound state to improve protein-binding affinity and has been applied to visualize dynamic carbohydrate-carbohydrate interactions that control glycoprotein-glycoprotein complex formation. Functional glycoclusters have been characterized by experimental and computational approaches applied to various model membranes and artificial self-assembling systems. This line of investigation has provided dynamic views of molecular assembling on glycoclusters, giving mechanistic insights into physiological and pathological molecular events on cell surfaces as well as clues for the design and creation of molecular systems exerting improved glycofunctions. Further development and accumulation of such studies will allow detailed understanding and artificial control of the "glycosynapse" foreseen by Dr. Sen-itiroh Hakomori.


Assuntos
Glicolipídeos , Polissacarídeos , Carboidratos/química , Glicoproteínas , Polissacarídeos/química , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA