Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 885: 163751, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37146821

RESUMO

Measured salt compositions in dust collected over roughly the last decade from surfaces of in-service stainless-steel alloys at four locations around the United States are presented, along with the predicted brine compositions that would result from deliquescence of these salts. The salt compositions vary greatly from ASTM seawater and from laboratory salts (i.e., NaCl or MgCl2) commonly used on corrosion testing. The salts contained relatively high amounts of sulfates and nitrates, evolved to basic pH values, and exhibited deliquescence relative humidity values (RH) higher than seawater. Additionally, inert dust in components were quantified and considerations for laboratory testing are presented. The observed dust compositions are discussed in terms of the potential corrosion behavior and are compared to commonly used accelerated testing protocols. Finally, ambient weather conditions and their influence on diurnal fluctuations in temperature (T) and RH on heated metal surfaces are evaluated and a relevant diurnal cycle for laboratory testing a heated surface has been developed. Suggestions for future accelerated tests are proposed that include exploration of the effects of inert dust particles on atmospheric corrosion, chemistry considerations, and realistic diurnal fluctuations in T and RH. Understanding mechanisms in both realistic and accelerated environments will allow development of a corrosion factor (i.e., scaling factor) for the extrapolation of laboratory-scale test results to real world applications.

2.
Sci Total Environ ; 824: 154462, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35278544

RESUMO

Thermodynamic modeling has been used to predict chemical compositions of brines formed by the deliquescence of sea salt aerosols. Representative brines have been mixed, and physical and chemical properties have been measured over a range of temperatures. Brine properties are discussed in terms of atmospheric corrosion of austenitic stainless steel, using spent nuclear fuel dry storage canisters as an example. After initial loading with spent fuel, during dry storage, the canisters cool over time, leading to increased surface relative humidities and evolving brine chemistries and properties. These parameters affect corrosion kinetics and damage distributions, and may offer important constraints on the expected timing, rate, and long-term impacts of canister corrosion.


Assuntos
Sais , Aerossóis , Umidade , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA