RESUMO
Inherited alleles account for most of the genetic risk for schizophrenia. However, new (de novo) mutations, in the form of large chromosomal copy number changes, occur in a small fraction of cases and disproportionally disrupt genes encoding postsynaptic proteins. Here we show that small de novo mutations, affecting one or a few nucleotides, are overrepresented among glutamatergic postsynaptic proteins comprising activity-regulated cytoskeleton-associated protein (ARC) and N-methyl-d-aspartate receptor (NMDAR) complexes. Mutations are additionally enriched in proteins that interact with these complexes to modulate synaptic strength, namely proteins regulating actin filament dynamics and those whose messenger RNAs are targets of fragile X mental retardation protein (FMRP). Genes affected by mutations in schizophrenia overlap those mutated in autism and intellectual disability, as do mutation-enriched synaptic pathways. Aligning our findings with a parallel case-control study, we demonstrate reproducible insights into aetiological mechanisms for schizophrenia and reveal pathophysiology shared with other neurodevelopmental disorders.
Assuntos
Modelos Neurológicos , Mutação/genética , Rede Nervosa/metabolismo , Vias Neurais/metabolismo , Esquizofrenia/genética , Esquizofrenia/fisiopatologia , Sinapses/metabolismo , Transtornos Globais do Desenvolvimento Infantil/genética , Proteínas do Citoesqueleto/metabolismo , Exoma/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Humanos , Deficiência Intelectual/genética , Taxa de Mutação , Rede Nervosa/fisiopatologia , Proteínas do Tecido Nervoso/metabolismo , Vias Neurais/fisiopatologia , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/metabolismo , Especificidade por SubstratoRESUMO
The critical involvement of TGF-ß1 (transforming growth factor-ß1) in DN (diabetic nephropathy) is well established. However, the role of CTGF (connective tissue growth factor) in regulating the complex interplay of TGF-ß1 signalling networks is poorly understood. The purpose of the present study was to investigate co-operative signalling between CTGF and TGF-ß1 and its physiological significance. CTGF was determined to bind directly to the TßRIII (TGF-ß type III receptor) and antagonize TGF-ß1-induced Smad phosphorylation and transcriptional responses via its N-terminal half. Furthermore, TGF-ß1 binding to its receptor was inhibited by CTGF. A consequent shift towards non-canonical TGF-ß1 signalling and expression of a unique profile of differentially regulated genes was observed in CTGF/TGF-ß1-treated mesangial cells. Decreased levels of Smad2/3 phosphorylation were evident in STZ (streptozotocin)-induced diabetic mice, concomitant with increased levels of CTGF. Knockdown of TßRIII restored TGF-ß1-mediated Smad signalling and cell contractility, suggesting that TßRIII is key for CTGF-mediated regulation of TGF-ß1. Comparison of gene expression profiles from CTGF/TGF-ß1-treated mesangial cells and human renal biopsy material with histological diagnosis of DN revealed significant correlation among gene clusters. In summary, mesangial cell responses to TGF-ß1 are regulated by cross-talk with CTGF, emphasizing the potential utility of targeting CTGF in DN.
Assuntos
Fator de Crescimento do Tecido Conjuntivo/farmacologia , Regulação da Expressão Gênica/fisiologia , Células Mesangiais/metabolismo , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Animais , Linhagem Celular , Movimento Celular , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Diabetes Mellitus Experimental , Humanos , Camundongos , Fosforilação , Proteoglicanas/genética , Proteoglicanas/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Proteínas Smad/genética , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismoRESUMO
BACKGROUND: Renal interstitial fibrosis and glomerular sclerosis are hallmarks of diabetic nephropathy (DN) and several studies have implicated members of the WNT pathways in these pathological processes. This study comprehensively examined common genetic variation within the WNT pathway for association with DN. METHODS: Genes within the WNT pathways were selected on the basis of nominal significance and consistent direction of effect in the GENIE meta-analysis dataset. Common SNPs and common haplotypes were examined within the selected WNT pathway genes in a white population with type 1 diabetes, discordant for DN (cases: n = 718; controls: n = 749). SNPs were genotyped using Sequenom or Taqman assays. Association analyses were performed using PLINK, to compare allele and haplotype frequencies in cases and controls. Correction for multiple testing was performed by either permutation testing or using false discovery rate. RESULTS: A logistic regression model including collection centre, duration of diabetes, and average HbA1c as covariates highlighted three SNPs in GSK3B (rs17810235, rs17471, rs334543), two in DAAM1 (rs1253192, rs1252906) and one in NFAT5 (rs17297207) as being significantly (P < 0.05) associated with DN, however these SNPs did not remain significant after correction for multiple testing. Logistic regression of haplotypes, with ESRD as the outcome, and pairwise interaction analyses did not yield any significant results after correction for multiple testing. CONCLUSIONS: These results indicate that both common SNPs and common haplotypes of WNT pathway genes are not strongly associated with DN. However, this does not completely exclude these or the WNT pathways from association with DN, as unidentified rare genetic or copy number variants could still contribute towards the genetic architecture of DN.
Assuntos
Nefropatias Diabéticas/diagnóstico , Nefropatias Diabéticas/genética , Estudos de Associação Genética/métodos , Haplótipos/genética , Via de Sinalização Wnt/genética , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
Background: Common genetic variants in and around the gene encoding transcription factor 4 (TCF4) are associated with an increased risk of schizophrenia. Conversely, rare damaging TCF4 mutations cause Pitt-Hopkins syndrome and have also been found in individuals with intellectual disability (ID) and autism spectrum disorder (ASD). Methods: Chromatin immunoprecipitation and next generation sequencing were used to identify the genomic targets of TCF4. These data were integrated with expression, epigenetic and disease gene sets using a range of computational tools. Results: We identify 10604 TCF4 binding sites in the genome that were assigned to 5437 genes. De novo motif enrichment found that most TCF4 binding sites contained at least one E-box (5'-CAtcTG). Approximately 77% of TCF4 binding sites overlapped with the H3K27ac histone modification for active enhancers. Enrichment analysis on the set of TCF4 targets identified numerous, highly significant functional clusters for pathways including nervous system development, ion transport and signal transduction, and co-expression modules for genes associated with synaptic function and brain development. Importantly, we found that genes harboring de novo mutations in schizophrenia (P = 5.3 × 10-7), ASD (P = 2.5 × 10-4), and ID (P = 7.6 × 10-3) were also enriched among TCF4 targets. TCF4 binding sites were also found at other schizophrenia risk loci including the nicotinic acetylcholine receptor cluster, CHRNA5/CHRNA3/CHRNB4 and SETD1A. Conclusions: These data demonstrate that TCF4 binding sites are found in a large number of neuronal genes that include many genetic risk factors for common neurodevelopmental disorders.
Assuntos
Transtorno do Espectro Autista/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Expressão Gênica/genética , Predisposição Genética para Doença/genética , Deficiência Intelectual/genética , Esquizofrenia/genética , Fator de Transcrição 4/genética , Imunoprecipitação da Cromatina , Sequenciamento de Nucleotídeos em Larga Escala , HumanosRESUMO
Risk variants for schizophrenia affect more than 100 genomic loci, yet cell- and tissue-specific roles underlying disease liability remain poorly characterized. We have generated for two cortical areas implicated in psychosis, the dorsolateral prefrontal cortex and anterior cingulate cortex, 157 reference maps from neuronal, neuron-depleted and bulk tissue chromatin for two histone marks associated with active promoters and enhancers, H3-trimethyl-Lys4 (H3K4me3) and H3-acetyl-Lys27 (H3K27ac). Differences between neuronal and neuron-depleted chromatin states were the major axis of variation in histone modification profiles, followed by substantial variability across subjects and cortical areas. Thousands of significant histone quantitative trait loci were identified in neuronal and neuron-depleted samples. Risk variants for schizophrenia, depressive symptoms and neuroticism were significantly over-represented in neuronal H3K4me3 and H3K27ac landscapes. Our Resource, sponsored by PsychENCODE and CommonMind, highlights the critical role of cell-type-specific signatures at regulatory and disease-associated noncoding sequences in the human frontal lobe.
Assuntos
Epigênese Genética/genética , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Histonas/genética , Esquizofrenia/genética , Esquizofrenia/metabolismo , Doença de Alzheimer/genética , Mapeamento Encefálico , Cromatina/genética , Depressão/genética , Depressão/patologia , Escolaridade , Predisposição Genética para Doença/genética , Variação Genética , Estudo de Associação Genômica Ampla , Giro do Cíngulo/patologia , Humanos , Transtornos Neuróticos/genética , Transtornos Neuróticos/patologia , Córtex Pré-Frontal/patologia , RiscoRESUMO
BACKGROUND: The nervous system may include more than 100 residue-specific posttranslational modifications of histones forming the nucleosome core that are often regulated in cell-type-specific manner. On a genome-wide scale, some of the histone posttranslational modification landscapes show significant overlap with the genetic risk architecture for several psychiatric disorders, fueling PsychENCODE and other large-scale efforts to comprehensively map neuronal and nonneuronal epigenomes in hundreds of specimens. However, practical guidelines for efficient generation of histone chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) datasets from postmortem brains are needed. METHODS: Protocols and quality controls are given for the following: 1) extraction, purification, and NeuN neuronal marker immunotagging of nuclei from adult human cerebral cortex; 2) fluorescence-activated nuclei sorting; 3) preparation of chromatin by micrococcal nuclease digest; 4) ChIP for open chromatin-associated histone methylation and acetylation; and 5) generation and sequencing of ChIP-seq libraries. RESULTS: We present a ChIP-seq pipeline for epigenome mapping in the neuronal and nonneuronal nuclei from the postmortem brain. This includes a stepwise system of quality controls and user-friendly data presentation platforms. CONCLUSIONS: Our practical guidelines will be useful for projects aimed at histone posttranslational modification mapping in chromatin extracted from hundreds of postmortem brain samples in cell-type-specific manner.
Assuntos
Córtex Cerebral/metabolismo , Epigênese Genética , Epigenômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Histonas/metabolismo , Nucleossomos/metabolismo , Acetilação , Antígenos Nucleares/metabolismo , Imunoprecipitação da Cromatina , Humanos , Metilação , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Processamento de Proteína Pós-TraducionalRESUMO
OBJECTIVE: WNT/ß-catenin pathway members have been implicated in interstitial fibrosis and glomerular sclerosis disease processes characteristic of diabetic nephropathy (DN), processes partly controlled by transcription factors (TFs) that bind to gene promoter regions attenuating regulation. We sought to identify predicted cis-acting transcription factor binding sites (TFBSs) overrepresented within WNT pathway members. METHODS: We assessed 62 TFBS motif frequencies from the JASPAR databases in 65 WNT pathway genes. P values were estimated on the hypergeometric distribution for each TF. Gene expression profiles of enriched motifs were examined in DN-related datasets to assess clinical significance. RESULTS: Transcription factor AP-2 alpha (TFAP2A), myeloid zinc finger 1 (MZF1), and specificity protein 1 (SP1) were significantly enriched within WNT pathway genes (P values < 6.83 × 10(-29), 1.34 × 10(-11), and 3.01 × 10(-6), resp.). MZF1 expression was significantly increased in DN in a whole kidney dataset (fold change = 1.16; 16% increase; P = 0.03). TFAP2A expression was decreased in an independent dataset (fold change = -1.02; P = 0.03). No differential expression of SP1 was detected. CONCLUSIONS: Three TFBS profiles are significantly enriched within WNT pathway genes highlighting the potential of in silico analyses for identification of pathway regulators. Modification of TF binding may possibly limit DN progression, offering potential therapeutic benefit.
Assuntos
Nefropatias Diabéticas/genética , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Transcrição Gênica , Via de Sinalização Wnt/genética , Sítios de Ligação , Biologia Computacional , Bases de Dados Genéticas , HumanosRESUMO
Over 100 genetic loci harbor schizophrenia-associated variants, yet how these variants confer liability is uncertain. The CommonMind Consortium sequenced RNA from dorsolateral prefrontal cortex of people with schizophrenia (N = 258) and control subjects (N = 279), creating a resource of gene expression and its genetic regulation. Using this resource, â¼20% of schizophrenia loci have variants that could contribute to altered gene expression and liability. In five loci, only a single gene was involved: FURIN, TSNARE1, CNTN4, CLCN3 or SNAP91. Altering expression of FURIN, TSNARE1 or CNTN4 changed neurodevelopment in zebrafish; knockdown of FURIN in human neural progenitor cells yielded abnormal migration. Of 693 genes showing significant case-versus-control differential expression, their fold changes were ≤ 1.33, and an independent cohort yielded similar results. Gene co-expression implicates a network relevant for schizophrenia. Our findings show that schizophrenia is polygenic and highlight the utility of this resource for mechanistic interpretations of genetic liability for brain diseases.
Assuntos
Regulação da Expressão Gênica/genética , Predisposição Genética para Doença , Herança Multifatorial/genética , Esquizofrenia/genética , Encéfalo/metabolismo , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , RiscoRESUMO
We sought to obtain novel insights into schizophrenia pathogenesis by exploiting the association between the disorder and chromosomal copy number (CNV) burden. We combined data from 5,745 cases and 10,675 controls with other published datasets containing genome-wide CNV data. In this much-enlarged sample of 11,355 cases and 16,416 controls, we show for the first time that case CNVs are enriched for genes involved in GABAergic neurotransmission. Consistent with non-genetic reports of GABAergic deficits in schizophrenia, our findings now show disrupted GABAergic signaling is of direct causal relevance, rather than a secondary effect or due to confounding. Additionally, we independently replicate and greatly extend previous findings of CNV enrichment among genes involved in glutamatergic signaling. Given the strong functional links between the major inhibitory GABAergic and excitatory glutamatergic systems, our findings converge on a broad, coherent set of pathogenic processes, providing firm foundations for studies aimed at dissecting disease mechanisms.
Assuntos
Variações do Número de Cópias de DNA/genética , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Esquizofrenia/diagnóstico , Esquizofrenia/genética , Transdução de Sinais/fisiologia , Animais , Estudos de Casos e Controles , Humanos , CamundongosRESUMO
AIMS/HYPOTHESIS: Several studies have provided compelling evidence implicating the Wnt signalling pathway in the pathogenesis of diabetic nephropathy. Gene expression profiles associated with renal fibrosis have been attenuated through Wnt pathway modulation in model systems implicating Wnt pathway members as potential therapeutic targets for the treatment of diabetic nephropathy. We assessed tag and potentially functional single nucleotide polymorphisms (SNPs; nâ=â31) in four key Wnt pathway genes (CTNNB1, AXIN2, LRP5 and LRP6) for association with diabetic nephropathy using a case-control design. METHODS: SNPs were genotyped using Sequenom or Taqman technologies in 1351 individuals with type 1 diabetes (651 cases with nephropathy and 700 controls without nephropathy). Cases and controls were white and recruited from the UK and Ireland. Association analyses were performed using PLINK, to compare allele and haplotype frequencies in cases and controls. Adjustment for multiple testing was performed by permutation testing. RESULTS: Following logistic regression analysis adjusted by collection centre, duration of T1D, and average HbA1c as covariates, a single SNP in LRP6 (rs1337791) was significantly associated with DN (ORâ=â0.74; CI: 0.57-0.97; Pâ=â0.028), although this was not maintained following correction for multiple testing. Three additional SNPs (rs2075241 in LRP6; rs3736228 and rs491347 both in LRP5) were marginally associated with diabetic nephropathy, but none of the associations were replicated in an independent dataset. Haplotype and subgroup analysis (according to duration of diabetes, and end-stage renal disease) also failed to reveal an association with diabetic nephropathy. CONCLUSIONS/INTERPRETATION: Our results suggest that analysed common variants in CTNNB1, AXIN2, LRP5 and LRP6 are not strongly associated with diabetic nephropathy in type 1 diabetes among white individuals. Our findings, however, cannot entirely exclude these genes or other members of the Wnt pathway, from involvement in the pathogenesis of diabetic nephropathy as our study had limited power to detect variants with small effect size.