Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Clean Prod ; 207: 1163-1179, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31598037

RESUMO

The agricultural sector accounts for 70% of all water consumption and poses great pressure on ground water resources. Therefore, evaluating agricultural water consumption is highly important as it allows supply chain actors to identify practices which are associated with unsustainable water use, which risk depleting current water resources and impacting future production. However, these assessments are often not feasible for crop producers as data, models and experiments are required in order to conduct them. This work introduces a new on-line agricultural water use assessment tool that provides the water footprint and irrigation requirements at field scale based on an enhanced FAO56 approach combined with a global climate, crop and soil databases. This has been included in the Cool Farm Tool - an online tool which already provides metrics for greenhouse gas emissions and biodiversity impacts and therefore allows for a more holistic assessment of environmental sustainability in farming and agricultural supply chains. The model is tested against field scale and state level water footprint data providing good results. The tool provides a practical, reliable way to assess agricultural water use, and offers a means to engage growers and stakeholders in identifying efficient water management practices.

2.
Environ Res Lett ; 152020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33850516

RESUMO

Cereals are an important component of the Indian diet, providing 47% of the daily dietary energy intake. Dwindling groundwater reserves in India especially in major cereal-growing regions are an increasing challenge to national food supply. An improved understanding of interstate cereal trade can help to identify potential risks to national food security. Here, we quantify the trade between Indian states of five major cereals and the associated trade in virtual (or embedded) water. To do this, we modelled interstate trade of cereals using Indian government data on supply and demand; calculated virtual water use of domestic cereal production using state- and product-specific water footprints and state-level data on irrigation source; and incorporated virtual water used in the production of internationally-imported cereals using country-specific water footprints. We estimate that 40% (94 million tonnes) of total cereal food supply was traded between Indian states in 2011-12, corresponding to a trade of 54.0 km3 of embedded blue water, and 99.4 km3 of embedded green water. Of the cereals traded within India, 41% were produced in states with over-exploited groundwater reserves (defined according to the Central Ground Water Board) and a further 21% in states with critically depleting groundwater reserves. Our analysis indicates a high dependency of Indian cereal consumption on production in states with stressed groundwater reserves. Substantial changes in agricultural practices and land use may be required to secure future production, trade and availability of cereals in India. Diversifying production systems could increase the resilience of India's food system.

3.
Sci Total Environ ; 673: 207-217, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-30986680

RESUMO

India has the highest national freshwater demand globally and 91% of India's freshwater is used in the agriculture sector. Cereals account for over 50% of the dietary water footprint in India and represent a potential opportunity for reducing water use in Indian agriculture. This study combines governmental production and irrigation statistics with crop distribution maps to examine trends in annual water use for cereal production in India between 2005 and 2014. A new online water assessment tool, Cool Farm Tool Water (CFTW), was used to calculate water use and derive seasonal state-level blue and green water footprints for rice, wheat, sorghum, millet and maize. The analysis indicates that India achieved 26.4% increased total cereal production between 2005 and 2014 without additional water or land use. Cereal water footprints have declined due to higher yields for most crops and slightly lower rates of evapotranspiration. There has also been a shift in the area under production away from the Kharif (monsoon) towards the Rabi (dry) season in which total water footprints for all cereals except rice are substantially lower (-33.4% to -45.0% compared to Kharif), but show a significantly higher dependency on ground and surface water. The value of this study is two-fold. First, it provides a full assessment of production trends for the five major cereals in India for each year from 2005 to 2014 and links it to water use. Secondly, it uses updated seasonal water footprints, which demonstrate the potential for changes in cereal production practices to contribute to improved efficiency of water use in India. Future pressures on scarce water resources may encourage transition to cereals with lower irrigation dependency, in particular maize, but also sorghum and millet. In addition, increased emphasis on improving millet and sorghum yields would be of benefit to secure cereal production and reduce its overall water footprint.


Assuntos
Agricultura/métodos , Grão Comestível/crescimento & desenvolvimento , Recursos Hídricos/provisão & distribuição , Abastecimento de Água/estatística & dados numéricos , Agricultura/estatística & dados numéricos , Conservação dos Recursos Hídricos/estatística & dados numéricos , Produtos Agrícolas , Fertilizantes , Índia , Milhetes , Oryza , Sorghum , Triticum , Zea mays
4.
Sci Total Environ ; 587-588: 128-136, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28215793

RESUMO

Agriculture accounts for ~90% of India's fresh water use, and there are concerns that future food production will be threatened by insufficient water supply of adequate quality. This study aimed to quantify the water required in the production of diets in India using the water footprint (WF) assessment method. The socio-demographic associations of dietary WFs were explored using mixed effects regression models with a particular focus on blue (irrigation) WF given the importance for Indian agriculture. Dietary data from ~7000 adults living in India were matched to India-specific WF data for food groups to quantify the blue and green (rainfall) WF of typical diets. The mean blue and green WF of diets was 737l/capita/day and 2531l/capita/day, respectively. Vegetables had the lowest WFs per unit mass of product, while roots/tubers had the lowest WFs per unit dietary energy. Poultry products had the greatest blue WFs. Wheat and rice contributed 31% and 19% of the dietary blue WF respectively. Vegetable oils were the highest contributor to dietary green WF. Regional variation in dietary choices meant large differences in dietary blue WFs, whereby northern diets had nearly 1.5 times greater blue WFs than southern diets. Urban diets had a higher blue WF than rural diets, and a higher standard of living was associated with larger dietary blue WFs. This study provides a novel perspective on the WF of diets in India using individual-level dietary data, and demonstrates important variability in WFs due to different food consumption patterns and socio-demographic characteristics. Future dietary shifts towards patterns currently consumed by individuals in higher income groups, would likely increase irrigation requirements putting substantial pressure on India's water resources.


Assuntos
Conservação dos Recursos Naturais/estatística & dados numéricos , Dieta/estatística & dados numéricos , Abastecimento de Água/estatística & dados numéricos , Agricultura , Demografia , Índia , Recursos Hídricos/provisão & distribuição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA