RESUMO
An elevated frequency of DNA replication defects is associated with diabetes and cancer. However, data linking these nuclear perturbations to the onset or progression of organ complications remained unexplored. Here, we report that RAGE (Receptor for Advanced Glycated Endproducts), previously believed to be an extracellular receptor, upon metabolic stress localizes to the damaged forks. There it interacts and stabilizes the minichromosome-maintenance (Mcm2-7) complex. Accordingly, RAGE deficiency leads to slowed fork progression, premature fork collapse, hypersensitivity to replication stress agents and reduction of viability, which was reversed by the reconstitution of RAGE. This was marked by the 53BP1/OPT-domain expression and the presence of micronuclei, premature loss-of-ciliated zones, increased incidences of tubular-karyomegaly, and finally, interstitial fibrosis. More importantly, the RAGE-Mcm2 axis was selectively compromised in cells expressing micronuclei in human biopsies and mouse models of diabetic nephropathy and cancer. Thus, the functional RAGE-Mcm2/7 axis is critical in handling replication stress in vitro and human disease.
Assuntos
Diabetes Mellitus , Componente 2 do Complexo de Manutenção de Minicromossomo , Neoplasias , Receptor para Produtos Finais de Glicação Avançada , Animais , Humanos , Camundongos , Proteínas de Ciclo Celular/metabolismo , Replicação do DNA/genética , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismoRESUMO
Diabetes-associated organ fibrosis, marked by elevated cellular senescence, is a growing health concern. Intriguingly, the mechanism underlying this association remained unknown. Moreover, insulin alone can neither reverse organ fibrosis nor the associated secretory phenotype, favoring the exciting notion that thus far unknown mechanisms must be operative. Here, we show that experimental type 1 and type 2 diabetes impairs DNA repair, leading to senescence, inflammatory phenotypes, and ultimately fibrosis. Carbohydrates were found to trigger this cascade by decreasing the NAD+ /NADH ratio and NHEJ-repair in vitro and in diabetes mouse models. Restoring DNA repair by nuclear over-expression of phosphomimetic RAGE reduces DNA damage, inflammation, and fibrosis, thereby restoring organ function. Our study provides a novel conceptual framework for understanding diabetic fibrosis on the basis of persistent DNA damage signaling and points to unprecedented approaches to restore DNA repair capacity for resolution of fibrosis in patients with diabetes.
Assuntos
Reparo do DNA por Junção de Extremidades , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células A549 , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Fibrose , Células HEK293 , HumanosRESUMO
Stable cell cloning is an essential aspect of biological research. All advanced genome editing tools rely heavily on stable, pure, single cell-derived clones of genetically engineered cells. For years, researchers have depended on single-cell dilutions seeded in 96- or 192-well plates, followed by microscopic exclusion of the wells seeded with more than or without a cell. This method is not just laborious, time-consuming, and uneconomical but also liable to unintentional error in identifying the wells seeded with a single cell. All these disadvantages may increase the time needed to generate a stable clone. Here, we report an easy-to-follow and straightforward method to conveniently create pure, stable clones in less than half the time traditionally required. Our approach utilizes cloning cylinders with non-toxic tissue-tek gel, commonly used for immobilizing tissues for sectioning, followed by trypsinization and screening of the genome-edited clones. Our approach uses minimal cell handling steps, thus decreasing the time invested in generating the pure clones effortlessly and economically. Graphical abstract: A schematic comparison showing the traditional dilution cloning and the method described here. Here, a well-separated colony (in the green box) must be preferred over the colonies not well separated (in the red box).
RESUMO
Small cell lung carcinoma (SCLC) is a highly aggressive malignancy with a very high mortality rate. A prominent part of this is because these carcinomas are refractory to chemotherapies, such as etoposide or cisplatin, making effective treatment almost impossible. Here, we report that elevated expression of the RAGE variant-V in SCLC promotes homology-directed DNA DSBs repair when challenged with anti-cancer drugs. This variant exclusively localizes to the nucleus, interacts with members of the double-strand break (DSB) repair machinery and thus promotes the recruitment of DSBs repair factors at the site of damage. Increased expression of this variant thus, promotes timely DNA repair. Congruently, the tumor cells expressing high levels of variant-V can tolerate chemotherapeutic drug treatment better than the RAGE depleted cells. Our findings reveal a yet undisclosed role of the RAGE variant-V in the homology-directed DNA repair. This variant thus can be a potential target to be considered for future therapeutic approaches in advanced SSLC.