Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 32(31)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33862600

RESUMO

Refractory materials exhibit high damage tolerance, which is attractive for the creation of nanoscale field-emission electronics and optoelectronics applications that require operation at high peak current densities and optical intensities. Recent results have demonstrated that the optical properties of titanium nitride, a refractory and CMOS-compatible plasmonic material, can be tuned by adding silicon and oxygen dopants. However, to fully leverage the potential of titanium (silicon oxy)nitride, a reliable and scalable fabrication process with few-nm precision is needed. In this work, we developed a fabrication process for producing engineered nanostructures with gaps between 10 and 15 nm, aspect ratios larger than 5 with almost 90° steep sidewalls. Using this process, we fabricated large-scale arrays of electrically-connected bow-tie nanoantennas with few-nm free-space gaps. We measured a typical variation of 4 nm in the average gap size. Using applied DC voltages and optical illumination, we tested the electronic and optoelectronic response of the devices, demonstrating sub-10 V tunneling operation across the free-space gaps, and quantum efficiency of up to 1 × 10-3at 1.2µm, which is comparable to a bulk silicon photodiode at the same wavelength and three orders of magnitude higher than with nearly identical gold devices. Tests demonstrated that the titanium silicon oxynitride nanostructures did not significantly degrade, exhibiting less than 5 nm of shrinking of the average gap dimensions over few-µm2areas after 10 h of operation. Our results will be useful for developing the next generation of robust and CMOS-compatible nanoscale devices for high-speed and low-power field-emission electronics and optoelectronics applications.

2.
Nanotechnology ; 25(46): 465304, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25354583

RESUMO

We demonstrate the design, fabrication, characterization, and operation of high-density arrays of Au nanorod electron emitters, fabricated by high-resolution electron beam lithography, and excited by ultrafast femtosecond near-infrared radiation. Electron emission characteristic of multiphoton absorption has been observed at low laser fluence, as indicated by the power-law scaling of emission current with applied optical power. The onset of space-charge-limited current and strong optical field emission has been investigated so as to determine the mechanism of electron emission at high incident laser fluence. Laser-induced structural damage has been observed at applied optical fields above 5 GV m(-1), and energy spectra of emitted electrons have been measured using an electron time-of-flight spectrometer.

3.
Opt Express ; 15(26): 17661-72, 2007 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-19551062

RESUMO

Dual-mode surface-plasmon resonance (SPR) sensors use both long- and short- range surface plasmon waves to differentiate surface binding interactions from interfering bulk effects. We have optimized the design of these sensors for minimum surface limit of detection (LOD) using a Cramer-Rao lower bound for spectral shift estimation. Despite trade-offs between resonance width, minimum reflectivity, and sensitivity for the two modes, a range of reasonable design parameters provides nearly optimal performance. Experimental verification using biotin-streptavidin binding as a model system reveals that sensitivity and LOD for dual-mode sensors remains competitive with single-mode sensors while compensating for bulk effects.


Assuntos
Ressonância de Plasmônio de Superfície/instrumentação , Transdutores , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA