Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Surfactants Deterg ; 23(4): 715-724, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34305390

RESUMO

In 2014, almost 16 million tons of surfactants were used globally for cleaning and industrial applications. As a result, massive quantities disperse into environmental compartments every day. There is great market interest in developing highly biodegradable, less-toxic, and renewable alternatives to currently used petroleum-based surfactants. Glycolipid surfactants, composed of a sugar head-group and lipid tail, are effective surfactants and emulsifiers with a high tolerance to electrolytes and are easily tailored to address specific needs. The green synthesis and surfactant characteristics of a suite of cellobiosides and melibiosides were recently described. The biodegradability and toxicity of 1°-alkyl-O-cellobiosides, 2°-alkyl-O-cellobiosides, and 1°-alkyl-O-melibiosides with straight-chain alkyl tails of 8, 10, and 12 are reported in this study. Biodegradability was assessed by quantifying mineralization (CO2 evolution). All of the glycosides were inherently biodegradable and most were readily biodegradable according to OECD and EPA definitions. The Microtox acute toxicity assay showed both chain length and head group had significant effects on toxicity, but most of the molecules were practically non-toxic according to EPA definitions with EC50 values > 100 mg L-1. Cytotoxicity to human lung (H1299) and keratinocyte cell lines (HaCaT) was measured by xCELLigence and MTS assays. Cytotoxicity values were comparable to similar glycosides previously reported. IC50 values were determined but, in general, exceeded surfactant concentrations that are found in the environment. These data demonstrate the promising nature of these molecules as green alternatives to petrochemical surfactants.

2.
Langmuir ; 33(30): 7412-7424, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28737038

RESUMO

The evolution of solution aggregates of the anionic form of the native monorhamnolipid (mRL) mixture produced by Pseudomonas aeruginosa ATCC 9027 is explored at pH 8.0 using both experimental and computational approaches. Experiments utilizing surface tension measurements, dynamic light scattering, and both steady-state and time-resolved fluorescence spectroscopy reveal solution aggregation properties. All-atom molecular dynamics simulations on self-assemblies of the most abundant monorhamnolipid molecule, l-rhamnosyl-ß-hydroxydecanoyl-ß-hydroxydecanoate (Rha-C10-C10), in its anionic state explore the formation of aggregates and the role of hydrogen bonding, substantiating the experimental results. At pH 8.0, at concentrations above the critical aggregation concentration of 201 µM but below ∼7.5 mM, small premicelles exist in solution; above ∼7.5 mM, micelles with hydrodynamic radii of ∼2.5 nm dominate, although two discrete populations of larger lamellar aggregates (hydrodynamic radii of ∼10 and 90 nm) are also present in solution in much smaller number densities. The critical aggregation number for the micelles is determined to be ∼26 monomers/micelle using fluorescence quenching measurements, with micelles gradually increasing in size with monorhamnolipid concentration. Molecular dynamics simulations on systems with between 10 and 100 molecules of Rha-C10-C10 indicate the presence of stable premicelles of seven monomers with the most prevalent micelle being ∼25 monomers and relatively spherical. A range of slightly larger micelles of comparable stability can also exist that become increasing elliptical with increasing monomer number. Intermolecular hydrogen bonding is shown to play a significant role in stabilization of these aggregates. In total, the computational results are in excellent agreement with the experimental results.

3.
Anal Chem ; 87(4): 2488-94, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25526646

RESUMO

Electrografted diazonium salt layers on the surface of surface plasmon resonance (SPR) sensors present potential for a significant improvement in antifouling coatings. A pulsed potential deposition profile was used in order to circumvent mass-transport limitations for layer deposition rate. The influence of number of pulses with respect to antifouling efficacy was evaluated by nonspecific adsorption surface coverage of crude bovine serum proteins. Instead of using empirical and rough estimated values, the penetration depth and sensitivity of the SPR instrument were experimentally determined for the calculation of nonspecific adsorption surface coverage. This provides a method to better examine antifouling surface coatings and compare crossing different coatings and experimental systems. Direct comparison of antifouling performance of different diazonium salts was facilitated by a tripad SPR sensor design. The electrografted 4-phenylalanine diazonium chloride (4-APhe) layers with zwitterionic characteristic demonstrate ultralow fouling.


Assuntos
Incrustação Biológica , Compostos de Diazônio/química , Soroalbumina Bovina/análise , Ressonância de Plasmônio de Superfície , Animais , Bovinos , Estrutura Molecular , Sais/química , Propriedades de Superfície
4.
Anal Chem ; 86(7): 3355-64, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24499170

RESUMO

Nanohole arrays exhibit unique surface plasmon resonance (SPR) characteristics according to hole periodicity, diameter, and excitation wavelength (λ(SPR)). This contribution investigates the SPR characteristics and surface sensitivity of various nanohole arrays with the aim of tuning the parameters for optimal sensing capability. Both the Bragg surface plasmons (SPs) arising from diffraction by the periodic holes and the traditional propagating SPs are characterized with emphasis on sensing capability of the propagating SPs. Several trends in bulk sensitivity and penetration depth were established, and the surface sensitivity was calculated from bulk sensitivity and penetration depth of the SPs for different analyte thicknesses. Increased accuracy and precision in penetration depth values were achieved by incorporating adsorbate effects on substrate permittivity. The optimal nanohole array conditions for highest surface sensitivity were determined (820 nm periodicity, 0.27 diameter/periodicity, and λ(SPR) = 1550 nm), which demonstrated an increase in surface sensitivity for the 10 nm analyte over continuous gold films at their optimal λ(SPR) (1300 nm) and conventional visible λ(SPR) (700 nm).


Assuntos
Nanoestruturas , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Ressonância de Plasmônio de Superfície/métodos
5.
Anal Chem ; 85(10): 4875-83, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23566015

RESUMO

The penetration depth of surface plasmons is commonly determined empirically from the observed response for adsorbate loading on gold surface plasmon resonance (SPR) substrates. However, changes in the SPR spectrum may originate from both changes in the effective refractive index near the metal surface and changes in the metal permittivity following covalent binding of the adsorbate layer. Herein, the significance of incorporating an additional adsorbate-metal bonding effect in the calculation is demonstrated in theory and in practice. The bonding effect is determined from the nonzero intercept of a SPR shift versus adsorbate thickness calibration and incorporated into the calculation of penetration depth at various excitation wavelengths. Determinations of plasmon penetration depth with and without the bonding response for alkanethiolate-gold are compared and are shown to be significantly different for a thiol monolayer adsorbate system. Additionally, plasmon penetration depth evaluated with bonding effect compensation shows greater consistency over different adsorbate thicknesses and better agreement with theory derived from Maxwell's equation, particularly for adsorbate thicknesses that are much smaller (<5%) than the plasmon penetration depth. The method is also extended to a more practically applicable polyelectrolyte multilayer adsorbate system.


Assuntos
Metais/química , Ressonância de Plasmônio de Superfície/métodos , Adsorção , Alcanos/química
6.
J Mater Chem B ; 10(20): 3861-3875, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35470365

RESUMO

Low molecular weight hydrogels are made of small molecules that aggregate via noncovalent interactions. Here, comprehensive characterization of the physical and chemical properties of hydrogels made from thioglycolipids of the disaccharides lactose and cellobiose with simple alkyl chains is reported. While thiolactoside hydrogels are robust, thiocellobioside gels are metastable, precipitating over time into fibrous crystals that can be entangled to create pseudo-hydrogels. Rheology confirms the viscoelastic solid nature of these hydrogels with storage moduli ranging from 10-600 kPa. Additionally, thiolactoside hydrogels are thixotropic which is a desirable property for many potential applications. Freeze-fracture electron microscopy of xerogels shows layers of stacked sheets that are entangled into networks. These structures are unique compared to the fibers or ribbons typically reported for hydrogels. Differential scanning calorimetry provides gel-to-liquid phase transition temperatures ranging from 30 to 80 °C. Prodan fluorescence spectroscopy allows assignment of phase transitions in the gels and other lyotropic phases of high concentration samples. Phase diagrams are estimated for all hydrogels at 1-10 wt% from 5 to ≥ 80 °C. These hydrogels represent a series of interesting materials with unique properties that make them attractive for numerous potential applications.


Assuntos
Hidrogéis , Tioglicosídeos , Hidrogéis/química , Transição de Fase , Reologia , Temperatura
7.
J Phys Chem B ; 125(49): 13585-13596, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34860023

RESUMO

Rhamnolipids are glycolipids produced by microorganisms with outstanding surfactant properties. They are a class of biosurfactants that are potential candidates for biodegradable and nontoxic replacements of current specialty synthetic surfactants. Building on our previous efforts in developing an efficient and practical chemical methodology to synthesize rhamnolipids allows us to now explore the tunability of rhamnolipid properties. Here, we explore the impact on solution self-assembly and adsorption at the air/water interface of symmetry of the two lipid tails for diastereomeric mixtures of a series of monorhamnolipids of the generic structure Rha-C14-Cx. Surface activity of the anionic forms of these molecules at pH 8 is described by surface tensiometry. Characteristics of their aggregation behavior in aqueous solutions including hydrodynamic radius, aggregation number, and aggregate morphology are determined using dynamic light scattering and time-resolved fluorescence quenching spectroscopy. The solution aggregation behavior of this series is found to unexpectedly vary in a nonmonotonic fashion. This is explained by molecular structural attributes of each series member that result in differences in the respective intermolecular interactions of various parts of these surfactants.


Assuntos
Glicolipídeos , Tensoativos , Adsorção , Lipídeos
8.
Rev Sci Instrum ; 83(9): 095113, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23020425

RESUMO

A second generation prototype enabling surface plasmon resonance spectroscopic measurements in the infrared (IR) range is described. The new design (v2) uses the optical train (optics and detector) within conventional FT-IR spectrometers by confining dimensions of the accessory to space available within the sample compartment of the spectrometer. The v2 accessory builds upon knowledge gained from a previous version that was based on a modified commercial variable angle spectroscopic accessory and addresses observed limitations of the original design-improved temporal stability and measurement acquisition speed, crucial to biomolecular binding studies, as well as optical flexibility, a requirement for investigations of novel plasmon-supporting materials. Different aspects of the accessory, including temporal stability, mechanical resilience, and sensitivity to changes in refractive index of a sample were evaluated and presented in this contribution.

9.
Appl Spectrosc ; 64(10): 1181-6, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20925990

RESUMO

The Harrick AutoSeagull variable angle reflection accessory for Fourier transform infrared (FT-IR) spectrometers provides access to various spectroscopic techniques in a highly flexible platform. In particular, its ability to perform total internal reflection measurements is of interest because it also forms the basis for surface plasmon resonance (SPR) spectroscopy in prism-based configurations. The work presented here discusses the modification of the AutoSeagull to perform SPR spectroscopy, allowing for easy incorporation of the technique into most common FT-IR spectrometers. The wavelength dependency of the dielectric constant of the plasmon-supporting metal (in our case, gold) is largely responsible for the sensitivity attributed to changes in the sample's refractive index (RI) monitored by SPR spectroscopy. Furthermore, the optical properties of gold are such that when near-infrared (NIR) and/or mid-infrared (mid-IR) wavelengths are used to excite surface plasmons, higher sensitivities to RI changes are experienced compared to surface plasmons excited with visible wavelengths. The result is that in addition to instrumental simplicity, SPR analysis on FT-IR spectrometers, as permitted by the modified AutoSeagull, also benefits from the wavelength ranges accessible. Adaptation of the AutoSeagull to SPR spectroscopy involved the incorporation of slit apertures to minimize the angular spread reaching the detector, resulting in sharper SPR "dips" but at the cost of noisier spectra. In addition, discussion of the system's analytical performance includes comparison of dip quality as a function of slit size, tailoring of the dip minima location with respect to incident angle, and sensitivity to bulk RI changes.


Assuntos
Análise de Fourier , Análise Espectral/métodos , Ressonância de Plasmônio de Superfície/métodos , Calibragem , Ouro/química , Refratometria , Sensibilidade e Especificidade , Software , Sacarose/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA