RESUMO
BACKGROUND: Important gaps exist in the dietary intake of adolescents in low- and middle-income countries (LMICs), partly due to expensive assessment methods and inaccuracy in portion-size estimation. Dietary assessment tools leveraging mobile technologies exist but only a few have been validated in LMICs. OBJECTIVE: We validated Food Recognition Assistance and Nudging Insights (FRANI), a mobile artificial intelligence (AI) dietary assessment application in adolescent females aged 12-18 y (n = 36) in Ghana, against weighed records (WR), and multipass 24-hour recalls (24HR). METHODS: Dietary intake was assessed during 3 nonconsecutive days using FRANI, WRs, and 24HRs. Equivalence of nutrient intake was tested using mixed-effect models adjusted for repeated measures, by comparing ratios (FRANI/WR and 24HR/WR) with equivalence margins at 10%, 15%, and 20% error bounds. Agreement between methods was assessed using the concordance correlation coefficient (CCC). RESULTS: Equivalence for FRANI and WR was determined at the 10% bound for energy intake, 15% for 5 nutrients (iron, zinc, folate, niacin, and vitamin B6), and 20% for protein, calcium, riboflavin, and thiamine intakes. Comparisons between 24HR and WR estimated equivalence at the 20% bound for energy, carbohydrate, fiber, calcium, thiamine, and vitamin A intakes. The CCCs by nutrient between FRANI and WR ranged between 0.30 and 0.68, which was similar for CCC between 24HR and WR (ranging between 0.38 and 0.67). Comparisons of food consumption episodes from FRANI and WR found 31% omission and 16% intrusion errors. Omission and intrusion errors were lower when comparing 24HR with WR (21% and 13%, respectively). CONCLUSIONS: FRANI AI-assisted dietary assessment could accurately estimate nutrient intake in adolescent females compared with WR in urban Ghana. FRANI estimates were at least as accurate as those provided through 24HR. Further improvements in food recognition and portion estimation in FRANI could reduce errors and improve overall nutrient intake estimations.
Assuntos
Cálcio , Avaliação Nutricional , Adolescente , Feminino , Humanos , Gana , Inteligência Artificial , Dieta , Ingestão de Energia , Cálcio da Dieta , Tiamina , Registros de DietaRESUMO
BACKGROUND: There is a gap in data on dietary intake of adolescents in low- and middle-income countries (LMICs). Traditional methods for dietary assessment are resource intensive and lack accuracy with regard to portion-size estimation. Technology-assisted dietary assessment tools have been proposed but few have been validated for feasibility of use in LMICs. OBJECTIVES: We assessed the relative validity of FRANI (Food Recognition Assistance and Nudging Insights), a mobile artificial intelligence (AI) application for dietary assessment in adolescent females (n = 36) aged 12-18 y in Vietnam, against a weighed records (WR) standard and compared FRANI performance with a multi-pass 24-h recall (24HR). METHODS: Dietary intake was assessed using 3 methods: FRANI, WR, and 24HRs undertaken on 3 nonconsecutive days. Equivalence of nutrient intakes was tested using mixed-effects models adjusting for repeated measures, using 10%, 15%, and 20% bounds. The concordance correlation coefficient (CCC) was used to assess the agreement between methods. Sources of errors were identified for memory and portion-size estimation bias. RESULTS: Equivalence between the FRANI app and WR was determined at the 10% bound for energy, protein, and fat and 4 nutrients (iron, riboflavin, vitamin B-6, and zinc), and at 15% and 20% bounds for carbohydrate, calcium, vitamin C, thiamin, niacin, and folate. Similar results were observed for differences between 24HRs and WR with a 20% equivalent bound for all nutrients except for vitamin A. The CCCs between FRANI and WR (0.60, 0.81) were slightly lower between 24HRs and WR (0.70, 0.89) for energy and most nutrients. Memory error (food omissions or intrusions) was â¼21%, with no clear pattern apparent on portion-size estimation bias for foods. CONCLUSIONS: AI-assisted dietary assessment and 24HRs accurately estimate nutrient intake in adolescent females when compared with WR. Errors could be reduced with further improvements in AI-assisted food recognition and portion estimation.
Assuntos
Niacina , Avaliação Nutricional , Adolescente , Inteligência Artificial , Ácido Ascórbico , Cálcio , Carboidratos , Dieta , Registros de Dieta , Ingestão de Energia , Feminino , Ácido Fólico , Humanos , Ferro , Reprodutibilidade dos Testes , Riboflavina , Tecnologia , Tiamina , Vietnã , Vitamina A , Vitaminas , ZincoRESUMO
Nuru is a deep learning object detection model for diagnosing plant diseases and pests developed as a public good by PlantVillage (Penn State University), FAO, IITA, CIMMYT, and others. It provides a simple, inexpensive and robust means of conducting in-field diagnosis without requiring an internet connection. Diagnostic tools that do not require the internet are critical for rural settings, especially in Africa where internet penetration is very low. An investigation was conducted in East Africa to evaluate the effectiveness of Nuru as a diagnostic tool by comparing the ability of Nuru, cassava experts (researchers trained on cassava pests and diseases), agricultural extension officers and farmers to correctly identify symptoms of cassava mosaic disease (CMD), cassava brown streak disease (CBSD) and the damage caused by cassava green mites (CGM). The diagnosis capability of Nuru and that of the assessed individuals was determined by inspecting cassava plants and by using the cassava symptom recognition assessment tool (CaSRAT) to score images of cassava leaves, based on the symptoms present. Nuru could diagnose symptoms of cassava diseases at a higher accuracy (65% in 2020) than the agricultural extension agents (40-58%) and farmers (18-31%). Nuru's accuracy in diagnosing cassava disease and pest symptoms, in the field, was enhanced significantly by increasing the number of leaves assessed to six leaves per plant (74-88%). Two weeks of Nuru practical use provided a slight increase in the diagnostic skill of extension workers, suggesting that a longer duration of field experience with Nuru might result in significant improvements. Overall, these findings suggest that Nuru can be an effective tool for in-field diagnosis of cassava diseases and has the potential to be a quick and cost-effective means of disseminating knowledge from researchers to agricultural extension agents and farmers, particularly on the identification of disease symptoms and their management practices.