Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroimage ; 59(3): 2485-93, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21924366

RESUMO

We propose a general approach to generate parametric maps. It consists in a multi-stage hierarchical scheme where, starting from the kinetic analysis of the whole brain, we then cascade the kinetic information to anatomical systems that are akin in terms of receptor densities, and then down to the voxel level. A-priori classes of voxels are generated either by anatomical atlas segmentation or by functional segmentation using unsupervised clustering. Kinetic properties are transmitted to the voxels in each class using maximum a posteriori (MAP) estimation method. We validate the novel method on a [11C]diprenorphine (DPN) test-retest data-set that represents a challenge to estimation given [11C]DPN's slow equilibration in tissue. The estimated parametric maps of volume of distribution (VT) reflect the opioid receptor distributions known from previous [11C]DPN studies. When priors are derived from the anatomical atlas, there is an excellent agreement and strong correlation among voxel MAP and ROI results and excellent test-retest reliability for all subjects but one. Voxel level results did not change when priors were defined through unsupervised clustering. This new method is fast (i.e. 15 min per subject) and applied to [11C]DPN data achieves accurate quantification of VT as well as high quality VT images. Moreover, the way the priors are defined (i.e. using an anatomical atlas or unsupervised clustering) does not affect the estimates.


Assuntos
Mapeamento Encefálico/métodos , Diprenorfina , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Algoritmos , Atlas como Assunto , Teorema de Bayes , Encéfalo/anatomia & histologia , Calibragem , Radioisótopos de Carbono , Análise por Conglomerados , Humanos , Processamento de Imagem Assistida por Computador , Cinética , Imageamento por Ressonância Magnética , Modelos Estatísticos , Dinâmica não Linear , Distribuição Normal , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA