Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Sci Food Agric ; 103(10): 4983-4992, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37058580

RESUMO

BACKGROUND: Beef from pasture-fed animals is viewed as a healthier and more welfare-friendly alternative to concentrate-fed beef. Botanically-diverse pastures consisting of numerous plant species may alter the fatty acid (FA) profile and the tocopherol content of beef, as well as the oxidative stability of the meat. In the present study, steers were assigned to one of three botanically-diverse diets: perennial ryegrass (PRG), perennial ryegrass + white clover (PRG + WC) or multi-species (MS), all with a finishing diet of the respective botanically-diverse silages plus a cereal-based concentrate, consistent with production systems in Ireland. The FA profile, tocopherol content, oxidative stability and colour of meat during storage were measured. RESULTS: Compared to the other diets, the MS diet resulted in higher proportions of linolenic acid (C18:3n-3c), linoleic acid (C18:2n-6c) and total polyunsaturated fatty acids (PUFA), with higher PUFA:saturated fatty acid and n-6:n-3 ratios in the meat. α-Tocopherol concentrations were lowest in the meat of animals from the MS diet. In uncooked meat, lipid oxidation and colour values were affected by storage time across all diets, whereas the MS diet led to higher hue values only on day 14 of storage. When cooked, meat from animals on PRG + WC and MS diets had higher lipid oxidation on days 1 and 2 of storage than meat from animals on the PRG diet. CONCLUSION: Feeding steers on a botanically-diverse diet consisting of six plant species can improve the n-3 FA and PUFA concentration of beef, affecting the susceptibility of cooked, but not uncooked, beef to oxidation. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Ácidos Graxos , Lolium , Animais , Bovinos , Tocoferóis , Ração Animal/análise , Dieta/veterinária , Ácidos Graxos Insaturados , Vitamina E , Carne/análise , Estresse Oxidativo
2.
Biol Reprod ; 100(1): 86-100, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30137215

RESUMO

Embryo transfer to the uterine horn contralateral to the ovary containing the corpus luteum (CL) negatively impacts pregnancy establishment in cattle. Our aim was to compare the transcriptome and ability of the ipsilateral and contralateral uterine horns to support preimplantation conceptus survival and growth to day 14. In experiment 1, endometrial samples from both horns were collected from synchronized heifers slaughtered on day 5, 7, 13, or 16 post-estrus (n = 5 per time) and subjected to RNA sequencing. In experiment 2, 10 day 7 in vitro produced blastocysts were transferred into the uterine horn ipsilateral (n = 9) or contralateral to the CL (n = 8) or into both horns (i.e., bilateral, n = 9) of synchronized recipient heifers. Reproductive tracts were recovered at slaughter on day 14, and the number and dimensions of recovered conceptuses were recorded for each horn. A total of 217, 54, 14, and 18 differentially expressed genes (>2-fold change, FDR P < 0.05) were detected between ipsilateral and contralateral horns on days 5, 7, 13, and 16, respectively, with signaling pathways regulating pluripotency of stem cells, ErbB signaling pathway, and mTOR signaling pathway amongst the top canonical pathways. Site of embryo transfer did not affect recovery rate (48.0%, 168/350) or length of conceptuses (mean ± SE 2.85 ± 0.27 mm). Although differences in gene expression exist between the endometrium of uterine horns ipsilateral and contralateral to the CL in cattle, they do not impact conceptus survival or length between day 7 and 14.


Assuntos
Blastocisto/fisiologia , Bovinos , Corpo Lúteo/metabolismo , Desenvolvimento Embrionário/genética , Endométrio/metabolismo , Transcriptoma/fisiologia , Útero/metabolismo , Animais , Bovinos/embriologia , Bovinos/genética , Implantação do Embrião/genética , Implantação do Embrião/fisiologia , Transferência Embrionária/veterinária , Embrião de Mamíferos , Endométrio/fisiologia , Feminino , Idade Gestacional , Gravidez
3.
J Anim Physiol Anim Nutr (Berl) ; 102(5): 1296-1305, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29974992

RESUMO

The objective of this study was to investigate the effects of supplementing both phytase and 25-hydroxyvitamin D3 (25-OH-D3) on pig performance, nutrient digestibility, carcass characteristics, bone parameters and pork quality in finisher pigs. The experimental design was a 2 × 2 factorial comprising of four dietary treatments. One hundred and twenty pigs (60 male, 60 female) were blocked according to live weight and sex and allocated to the following dietary treatments: low P (4.81 g/kg) diet (basal) (T1); low P diet + phytase (T2); low P diet + 25-OH-D3 (T3) and low P diet + phytase + 25-OH-D3 (T4). Pigs supplemented with phytase had a lower average daily feed intake (ADFI) (2.45 kg vs. 2.59 kg; p < 0.05) and lower feed conversion ratio (FCR) (2.74 kg/kg vs. 2.85 kg/kg; p < 0.05) compared to pigs offered the nonphytase diets. Pigs offered phytase diets had a higher (p < 0.05) coefficient of apparent total tract digestibility (CATTD) of ash, phosphorous (P) and calcium (Ca) compared with pigs offered the nonphytase supplemented diets. Pigs offered the 25-OH-D3 diets had a higher CATTD of N and ash. Pigs offered the phytase diets had increased (p < 0.05) bone DM, ash, Ca, P and density compared to the nonphytase diets. There was a significant interaction (p < 0.05) between phytase and 25-OH-D3 on cook loss. Pigs offered 25-OH-D3 had increased cook loss over the basal diet; however, there was no effect on cook loss when phytase and 25-OH-D3 were offered in combination compared to the phytase only diet. Pigs offered 25-OH-D3 exhibited higher (p < 0.05) Warner Bratzler shear force values and lower (p < 0.05) pork lightness (L*) surface colorimeter values. In conclusion, there was no benefit to offering a combination of phytase and 25-OH-D3 on pig performance, bone parameters or pork quality.


Assuntos
6-Fitase/farmacologia , Osso e Ossos/metabolismo , Calcifediol/farmacologia , Carne/normas , Suínos/crescimento & desenvolvimento , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta , Suplementos Nutricionais , Digestão , Feminino , Masculino , Fósforo/metabolismo
4.
Biol Reprod ; 97(1): 50-60, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28859280

RESUMO

In a recent genome-wide association study, 40 Fleckvieh bulls with exceptionally poor fertility were found to be homozygous for a nonsense mutation in the transmembrane protein 95 (TMEM95) encoding gene. Ejaculates from these individuals exhibited normal sperm concentration, morphology, viability, and motility. However, only 1.7% of inseminations resulted in pregnancies. The aim of this study was to examine the effect of this mutation in TMEM95 on bovine sperm function in vitro. Sperm from homozygous (mt/mt) males had lower in vitro fertility than sperm from wild-type (wt/wt) or heterozygous (wt/mt) bulls (P < 0.01). In addition, early embryo division was affected in the mt/mt group (P < 0.01). This translated into a lower (P < 0.01) blastocyst rate at day 8. Fluorescent staining revealed that TMEM95 is lost after the acrosome reaction. This led us to hypothesize that TMEM95 might be involved in events that lead to sperm-oocyte interaction. After fertilization, a lower number (P < 0.01) of sperm from mt/mt bulls bound to the zona pellucida (ZP). Sperm from mt/mt bulls were also less able to penetrate oocytes with no ZP (P< 0.01). However, when sperm from these animals were injected into mouse oocytes, they could decondense as successfully as sperm from wt/wt bulls. No differences between genotypes were observed in the ability of sperm to retain motility in an ex vivo oviduct, or in the percentage of sperm exhibiting markers for capacitation and acrosomal reaction. These results suggest that fertilization failure in mt/mt bulls is due to the inability of their sperm to interact with the oocyte vestments.


Assuntos
Doenças dos Bovinos/genética , Bovinos/genética , Infertilidade Masculina/genética , Proteínas de Membrana/metabolismo , Interações Espermatozoide-Óvulo/fisiologia , Espermatozoides/fisiologia , Animais , Feminino , Masculino , Proteínas de Membrana/genética , Mutação , Interações Espermatozoide-Óvulo/genética
5.
BMC Genomics ; 17: 244, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26984536

RESUMO

BACKGROUND: Compensatory growth (CG) is an accelerated growth phenomenon observed in animals upon re-alimentation following a period of dietary restriction. It is typically utilised in livestock systems to reduce feed costs during periods of reduced feed availability. The biochemical mechanisms controlling this phenomenon, however, are yet to be elucidated. This study aimed to uncover the molecular mechanisms regulating the hepatic expression of CG in cattle, utilising RNAseq. RNAseq was performed on hepatic tissue of bulls following 125 days of dietary restriction (RES) and again following 55 days of subsequent re-alimentation during which the animals exhibited significant CG. The data were compared with those of control animals offered the same diet on an ad libitum basis throughout (ADLIB). Elucidation of the molecular control of CG may yield critical information on genes and pathways which could be targeted as putative molecular biomarkers for the selection of animals with improved CG potential. RESULTS: Following a period of differential feeding, body-weight and liver weight were 161 and 4 kg higher, respectively, for ADLIB compared with RES animals. At this time RNAseq analysis of liver tissue revealed 1352 significantly differentially expressed genes (DEG) between the two treatments. DEGs indicated down-regulation of processes including nutrient transport, cell division and proliferation in RES. In addition, protein synthesis genes were up-regulated in RES following a period of restricted feeding. The subsequent 55 days of ad libitum feeding for both groups resulted in the body-weight difference reduced to 84 kg, with no difference in liver weight between treatment groups. At the end of 55 days of unrestricted feeding, 49 genes were differentially expressed between animals undergoing CG and their continuously fed counterparts. In particular, hepatic expression of cell proliferation and growth genes were greater in animals undergoing CG. CONCLUSIONS: Greater expression of cell cycle and cell proliferation genes during CG was associated with a 100 % recovery of liver weight during re-alimentation. Additionally, an apparent up-regulation in capacity for cellular protein synthesis during restricted feeding may contribute to and sustain CG during re-alimentation. DEGs identified are potential candidate genes for the identification of biomarkers for CG, which may be incorporated into future breeding programmes.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Bovinos/crescimento & desenvolvimento , Privação de Alimentos , Fígado/metabolismo , Transcriptoma , Animais , Dieta/veterinária , Biblioteca Gênica , Masculino , Análise de Sequência de RNA
6.
Biol Reprod ; 95(6): 122, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27707713

RESUMO

Bovine beta-defensin 126 (BBD126) exhibits preferential expression for the cauda epididymis of males, where it is absorbed onto the tail and postacrosomal region of the sperm. The aim of this study was to examine the role of BBD126 in bull sperm function. Fresh and frozen-thawed semen were incubated in the presence of different capacitating agents as well as with phosphatidylinositol-specific phospholipase C. These treatments, which have been successful in releasing beta-defensin 126 from macaque sperm, proved to be ineffective in bull sperm. This finding suggests that the protein behaves in a different manner in the bovine. The lack of success in removing BBD126 led us to use corpus epididymis sperm, a model in which the protein is not present, to study its functional role. Corpus sperm were incubated with cauda epididymal fluid (CEF) in the absence or presence of BBD126 antibody or with recombinant BBD126 (rBBD126). Confocal microscopy revealed that rBBD126 binds to corpus sperm with the same pattern observed for BBD126 in cauda sperm, whereas an aberrant binding pattern is observed when sperm are subject to CEF incubation. Addition of CEF increased motility as well as the number of corpus sperm migrating through cervical mucus from estrus cows. However, it decreased the ability of sperm to fertilize in vitro matured oocytes. The presence of the antibody failed to abrogate these effects. Furthermore, when rBBD126 was added in the absence of other factors and proteins from the CEF, an increase in motility was also observed and no negative effects in fertility were seen. These results suggest that BBD126 plays a key role in the acquisition of sperm motility in the epididymis.


Assuntos
Epididimo/metabolismo , Fertilização/fisiologia , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/metabolismo , beta-Defensinas/metabolismo , Animais , Bovinos , Epididimo/efeitos dos fármacos , Feminino , Fertilização/efeitos dos fármacos , Técnicas de Maturação in Vitro de Oócitos , Masculino , Oócitos/metabolismo , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , beta-Defensinas/genética , beta-Defensinas/farmacologia
7.
Reprod Fertil Dev ; 28(12): 1999-2006, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26220578

RESUMO

The aim was to examine the effect of embryo-uterine synchrony on conceptus elongation and pregnancy rate in cattle. In Study 1, crossbred beef heifers each received 10 Day-7 in vitro-produced blastocysts on either Day 5, 7 or 9 after oestrus. A proportion of Day 5 recipients were supplemented with progesterone, via a progesterone-releasing intravaginal device from Days 3-5 plus either 750IU equine chorionic gonadotrophin or 3000IU human chorionic gonadotrophin on Day 3. At embryo age Day 14, all heifers were slaughtered and the uterus was flushed. Fewer recipients yielded conceptuses (P<0.05) and fewer conceptuses were recovered (P<0.05) following transfer on Day 5 compared with Day 7 or 9. Supplementation with progesterone resulted in short cycles in approximately 50% of recipients. Mean conceptus length was greater (P<0.05) following transfer to an advanced uterus. In Study 2, overall pregnancy rate following the fresh transfer of a single in vitro-produced blastocyst was 43.5% (2065/4749). Transfer of a Day 7 embryo to a synchronous Day-7 uterus resulted in a pregnancy rate of 47.3%. Transfer to a Day-5 (40.8%) or a Day-8 (41.3%) uterus moderately impacted pregnancy rate (P<0.01) while transfer to a uterus 2 days in advance (Day-9, 24.4%) or 3 days behind (Day-4, 27.0%) reduced (P<0.001) pregnancy rate compared with synchronous transfers. In conclusion, transfer of an embryo into an advanced uterus results in an acceleration of conceptus development, but does not result in greater pregnancy rates.


Assuntos
Gonadotropina Coriônica/farmacologia , Transferência Embrionária , Prenhez , Útero/fisiologia , Animais , Blastocisto , Bovinos , Feminino , Gravidez , Taxa de Gravidez , Progesterona
8.
Reprod Fertil Dev ; 28(12): 1882-1892, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26072962

RESUMO

The aim was to investigate the effect of lactation on the composition of pre-ovulatory follicular fluid (FF). Forty in-calf primiparous heifers and 20 maiden heifers were enrolled. Immediately after calving, half of the cows were dried off while the remainder were milked twice daily. Serum samples were collected twice weekly from two weeks pre- to 84 days postpartum (dpp). FF was analysed by gas chromatography-mass spectrometry. Serum concentrations of non-esterified fatty acids and ß-hydroxybutyrate were higher, while glucose, insulin and Insulin-like growth factor 1 (IGF1) concentrations were lower in lactating cows compared with non-lactating cows and heifers (P<0.01). Principal component analysis of FF metabolites revealed a clear separation of the lactating group from both non-lactating cows and heifers. The amino acids tyrosine, phenylalanine and valine and fatty acids heneicosanoic acid and docosahexaenoic acid were all lower in FF from lactating compared with dry cows (P<0.05). FF from lactating cows was higher in aminoadipic acid, α-aminobutyric acid, glycine and serine while histidine, leucine, lysine, methionine and ornithine were all lower than in dry cows and heifers (P<0.05). The ratio of n6:n3 was higher in lactating cows compared with both non-lactating cows and heifers, whereas total n3 polyunsaturated fatty acids, pentadecanoic, linolenic, elaidic and arachidonic acids were all lower in the FF of lactating cows than both non-lactating cows and heifers (P<0.05). In conclusion, lactation induces distinct changes in the overall metabolic status of postpartum lactating dairy cows which are associated with divergent metabolite profiles in FF.


Assuntos
Bovinos/fisiologia , Líquido Folicular/metabolismo , Lactação , Metaboloma , Animais , Ácidos Graxos não Esterificados/sangue , Feminino , Período Pós-Parto
9.
Physiol Genomics ; 47(8): 344-54, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26015430

RESUMO

The objectives of this study were to examine systemic insulin response to a glucose tolerance test (GTT) and transcript abundance of genes of the insulin signaling pathway in skeletal muscle, during both dietary restriction and re-alimentation-induced compensatory growth. Holstein Friesian bulls were blocked to one of two groups: 1) restricted feed allowance for 125 days (period 1) (RES, n = 15) followed by ad libitum feeding for 55 days (period 2) or 2) ad libitum access to feed throughout (periods 1 and 2) (ADLIB, n = 15). On days 90 and 36 of periods 1 and 2, respectively, a GTT was performed. M. longissimus dorsi biopsies were harvested from all bulls on days 120 and 15 of periods 1 and 2, respectively, and RNA-Seq analysis was performed. RES displayed a lower growth rate during period 1 (RES: 0.6 kg/day, ADLIB: 1.9 kg/day; P < 0.001), subsequently gaining more during re-alimentation (RES: 2.5 kg/day, ADLIB: 1.4 kg/day; P < 0.001). Systemic insulin response to glucose administration was lower in RES in period 1 (P < 0.001) with no difference observed during period 2. The insulin signaling pathway in M. longissimus dorsi was enriched (P < 0.05) in response to dietary restriction but not during re-alimentation (P > 0.05). Genes differentially expressed in the insulin signaling pathway suggested a greater sensitivity to insulin in skeletal muscle, with pleiotropic effects of insulin signaling interrupted during dietary restriction. Collectively, these results indicate increased sensitivity to glucose clearance and skeletal muscle insulin signaling during dietary restriction; however, no overall role for insulin was apparent in expressing compensatory growth.


Assuntos
Ingestão de Alimentos/fisiologia , Privação de Alimentos/fisiologia , Insulina/metabolismo , Transdução de Sinais , Animais , Bovinos , Perfilação da Expressão Gênica , Glucose/administração & dosagem , Secreção de Insulina , Músculos/metabolismo
10.
Physiol Genomics ; 47(7): 264-73, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25921585

RESUMO

The objective of this study was to characterize the effect of feed restriction and compensatory growth during re-alimentation on the functionality of the somatotropic axis. We blocked 60 bulls into one of two groups: 1) restricted feed allowance for 125 days (period 1) (RES, n = 30) followed by ad libitum feeding for 55 days (period 2) or 2) ad libitum access to feed throughout (ADLIB, n = 30). A growth hormone releasing hormone (GHRH) challenge was performed during each period. At the end of each period, 15 animals from each treatment were slaughtered and hepatic tissue collected. Hepatic expression of 13 genes of the somatotropic axis was measured by qRT-PCR. RES displayed a lower growth rate during period 1 (0.6 vs. 1.9 kg/day; P < 0.001), subsequently gaining more than ADLIB animals during period 2 (2.5 vs. 1.4 kg/day; P < 0.001). Growth hormone response to GHRH was not different between treatments at either time-point (P > 0.05); however, resultant plasma IGF-1 was lower in period 1 and greater in period 2 in RES animals (P < 0.05). Expression of IGFBP2 was higher (P < 0.01) and IGF1 (P < 0.001) and GHRIA (P < 0.05) lower in RES compared with ADLIB during period 1, with no difference evident in period 2 (P > 0.05). Collectively, the results of this study are consistent with uncoupling of the somatotropic axis following feed restriction. However, there is no evidence from this study that the somatotropic axis per se is a significant contributor to compensatory growth.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal/fisiologia , Restrição Calórica/veterinária , Bovinos/crescimento & desenvolvimento , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Hormônio do Crescimento/sangue , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Animais , Área Sob a Curva , Restrição Calórica/efeitos adversos , Biologia Computacional , Primers do DNA/genética , DNA Complementar/biossíntese , Fígado/metabolismo , Masculino , RNA/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Espectrofotometria/veterinária
11.
Animals (Basel) ; 13(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37048465

RESUMO

The study objective was to determine intake and performance of beef cattle individually offered perennial ryegrass-dominant grass silage ad libitum supplemented with 4 kg dry matter daily of, rolled barley or maize meal-based concentrate rations containing supplements of flaked field beans, flaked peas, maize dried distillers grains (MDD) or maize gluten feed (MGF) for 110 days (Experiment 1), rolled barley or rolled oats with or without supplements of flaked field beans or flaked peas for 146 days (Experiment 2), and to quantify the nitrogen balance of diets similar to those offered in Experiment 2 (Experiment 3). The protein supplements were formulated to have similar crude protein concentrations. Cereal type or protein source did not affect intake, growth, feed efficiency and carcass traits in Experiment 1 or 2. Inclusion of a legume protein supplement with barley or oats had no effect on intake or growth performance (Experiment 2), whereas their exclusion decreased nitrogen intake, plasma urea concentrations and urinary and total nitrogen excretion (Experiment 3). The feeding value of barley was similar to oats and maize meal, and flaked beans and peas were similar to MGF and MDD, as supplements to grass silage. Excluding protein ingredients from a cereal-based concentrate did not affect animal performance and reduced nitrogen excretion.

12.
Front Microbiol ; 13: 855565, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572638

RESUMO

With the advent of high throughput technology, it is now feasible to study the complex relationship of the rumen microbiota with methanogenesis in large populations of ruminant livestock divergently ranked for enteric emissions. Recently, the residual methane emissions (RME) concept has been identified as the optimal phenotype for assessing the methanogenic potential of ruminant livestock due to the trait's independence from animal productivity but strong correlation with daily methane emissions. However, there is currently a dearth of data available on the bacterial and archaeal microbial communities residing in the rumens of animals divergently ranked for RME. Therefore, the objective of this study was to investigate the relationship between the rumen microbiota and RME in a population of finishing beef cattle. Methane emissions were estimated from individual animals using the GreenFeed Emissions Monitoring system for 21 days over a mean feed intake measurement period of 91 days. Residual methane emissions were calculated for 282 crossbred finishing beef cattle, following which a ∼30% difference in all expressions of methane emissions was observed between high and low RME ranked animals. Rumen fluid samples were successfully obtained from 268 animals during the final week of the methane measurement period using a trans-oesophageal sampling device. Rumen microbial DNA was extracted and subjected to 16S rRNA amplicon sequencing. Animals ranked as low RME had the highest relative abundances (P < 0.05) of lactic-acid-producing bacteria (Intestinibaculum, Sharpea, and Olsenella) and Selenomonas, and the lowest (P < 0.05) proportions of Pseudobutyrivibrio, Butyrivibrio, and Mogibacterium. Within the rumen methanogen community, an increased abundance (P < 0.05) of the genus Methanosphaera and Methanobrevibacter RO clade was observed in low RME animals. The relative abundances of both Intestinibaculum and Olsenella were negatively correlated (P < 0.05) with RME and positively correlated with ruminal propionate. A similar relationship was observed for the abundance of Methanosphaera and the Methanobrevibacter RO clade. Findings from this study highlight the ruminal abundance of bacterial genera associated with the synthesis of propionate via the acrylate pathway, as well as the methanogens Methanosphaera and members of the Methanobrevibacter RO clade as potential microbial biomarkers of the methanogenic potential of beef cattle.

13.
Front Vet Sci ; 9: 958340, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36619952

RESUMO

Ruminant livestock play a key role in global society through the conversion of lignocellulolytic plant matter into high-quality sources of protein for human consumption. However, as a consequence of the digestive physiology of ruminant species, methane (CH4), which originates as a byproduct of enteric fermentation, is accountable for 40% of global agriculture's carbon footprint and ~6% of global greenhouse gas (GHG) emissions. Therefore, meeting the increasing demand for animal protein associated with a growing global population while reducing the GHG intensity of ruminant production will be a challenge for both the livestock industry and the research community. In recent decades, numerous strategies have been identified as having the potential to reduce the methanogenic output of livestock. Dietary supplementation with antimethanogenic compounds, targeting members of the rumen methanogen community and/or suppressing the availability of methanogenesis substrates (mainly H2 and CO2), may have the potential to reduce the methanogenic output of housed livestock. However, reducing the environmental impact of pasture-based beef cattle may be a challenge, but it can be achieved by enhancing the nutritional quality of grazed forage in an effort to improve animal growth rates and ultimately reduce lifetime emissions. In addition, the genetic selection of low-CH4-emitting and/or faster-growing animals will likely benefit all beef cattle production systems by reducing the methanogenic potential of future generations of livestock. Similarly, the development of other mitigation technologies requiring minimal intervention and labor for their application, such as anti-methanogen vaccines, would likely appeal to livestock producers, with high uptake among farmers if proven effective. Therefore, the objective of this review is to give a detailed overview of the CH4 mitigation solutions, both currently available and under development, for temperate pasture-based beef cattle production systems. A description of ruminal methanogenesis and the technologies used to estimate enteric emissions at pastures are also presented.

14.
Physiol Genomics ; 43(1): 12-23, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-20923863

RESUMO

Our objective was to evaluate the effects of phenotypic ranking on residual feed intake (RFI) on the transcription of genes 1) involved in the respiratory chain complex and 2) coding for transcriptional factors regulating mitochondrial biogenesis, across two contrasting diet types. Beef heifers (n = 86) fed a diet comprising 70:30 concentrate-corn silage [low forage (LF)] over a 82-day period were ranked on RFI. The 10 highest (feed inefficient, high-RFI) and 10 lowest (feed efficient, low-RFI) ranking animals were selected for the current study. Biopsies of the M. longissimus dorsi were harvested following initial selection (LF diet) and again following a 6 wk period while the animals were offered a high-forage (HF) grass silage-only diet. Real-time PCR was used to quantify mRNA transcripts of 17 genes associated with cellular energetic efficiency. The mRNA expression of UCP3 tended to be upregulated (2.2-fold, P = 0.06) for the high-RFI compared with the low-RFI animals. mRNA transcripts coding for the transcription factor PGC-1α was 1.7-fold higher (P = 0.01) in low compared with high-RFI animals. A phenotype × diet interaction was evident for the abundance of ANT1 mRNA transcript, with greater (P = 0.04) expression levels detected in the low-RFI phenotype during the HF period, but no difference (P = 0.50) between phenotypes during the LF period. A phenotype × diet interaction was also evident for COX II with greater expression levels detected (P = 0.04) in the low compared with the high RFI phenotype while on LF but not the HF diet (P = 0.22). These data suggest an association between cellular energetic efficiency and RFI in cattle.


Assuntos
Músculo Esquelético/metabolismo , Fosforilação Oxidativa , Ração Animal , Animais , Bovinos , Ciclo-Oxigenase 2/genética , Ingestão de Alimentos/fisiologia , Canais Iônicos/genética , Proteínas Mitocondriais/genética , Fenótipo , Reação em Cadeia da Polimerase , Proteína Desacopladora 3
15.
Sci Rep ; 11(1): 9716, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33958675

RESUMO

Adipose tissue represents not only an important energy storage tissue but also a major endocrine organ within the body, influencing many biochemical systems including metabolic status, immune function and energy homeostasis. The objective of this study was to evaluate the effect of an enhanced dietary intake during the early calfhood period on the transcriptome of visceral adipose tissue. Artificially reared Angus × Holstein-Friesian heifer calves were offered either a high (HI, n = 15) or moderate (MOD, n = 15) plane of nutrition from 3 to 21 weeks of life. At 21 weeks of age all calves were euthanized, visceral adipose harvested and samples subsequently subjected to mRNA sequencing. Plane of nutrition resulted in the differential expression of 1214 genes within visceral adipose tissue (adj. p < 0.05; fold change > 1.5). Differentially expressed genes were involved in processes related to metabolism and energy production. Biochemical pathways including Sirtuin signalling (adj. p < 0.0001) and the adipogenesis pathways (adj. p = 0.009) were also significantly enriched, indicating greater metabolic processing and adipogenesis in the calves on the high plane of nutrition. Results from this study identify novel genes regulating the molecular response of visceral adipose tissue to an improved plane of nutrition during early calfhood.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Gordura Intra-Abdominal/metabolismo , Transcriptoma , Animais , Bovinos , Biologia Computacional , Feminino , Crescimento , Análise de Sequência de RNA/métodos , Transdução de Sinais
16.
Animals (Basel) ; 11(9)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34573588

RESUMO

This study evaluated the effects of post-grazing sward height (PGSH, 4 or 6 cm) on herbage production, its nutritive value, dry matter (DM) intake, grazing behaviour and growth of early- (EM) and late-maturing (LM) breed suckler steers (n = 72), and the subsequent effect of indoor finishing diet (grass silage + 3.8 kg concentrate DM/head daily (SC), or grass silage only (SO)) on performance and carcass traits. Animals rotationally grazed pasture for 196 days, followed by indoor finishing for 119 days. At pasture, daily live-weight gain (LWG) was 0.10 kg greater for PGSH-6 than PGSH-4, resulting in a tendency for carcass weight to be 11 kg heavier. Although EM had a 0.10 kg greater daily LWG at pasture than LM, carcass weight did not differ between the genotypes. There was a genotype × PGSH interaction for carcass fat score, whereby there was no difference between EM-4 (8.83, 15-point scale) and EM-6 (8.17), but LM-6 (7.28) was greater than LM-4 (6.33). Although concentrate supplementation during indoor finishing increased carcass weight (+37 kg) and fat score (1.75 units), the majority of steers (83% of EM and 78% of LM) achieved a commercially-acceptable carcass fat score (6.78) at slaughter in the grass-forage-only system.

17.
J Proteomics ; 232: 104048, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33217582

RESUMO

Compensatory growth (CG) is a naturally occurring phenomenon where, following a period of under nutrition, an animal exhibits accelerated growth upon re-alimentation. The objective was to identify and quantify hepatic proteins involved in the regulation of CG in cattle. Forty Holstein Friesian bulls were equally assigned to one of four groups. Groups; A1 and A2 had ad libitum access to feed for 125 days, groups R1 and R2 were feed restricted. Following this, R1 and A1 animals were slaughtered. Remaining animals (R2 and A2) were slaughtered following ad libitum feeding for a successive 55 days. At slaughter hepatic tissue samples were collected and label-free quantitative proteomics undertaken with spectra searched against a custom built transcriptome database specific to the animals in this study. 24 differentially abundant proteins were identified during CG (R2 vs. R1) including; PSPH, ASNS and GSTM1, which are involved in nutrient metabolism, immune response and cellular growth. Proteins involved in biochemical pathways related to nutrient metabolism were down-regulated during CG, indicating a possible adaptive response by the liver to a period of fluctuating nutrient availability. The livers ability to regulate its metabolic activity may have profound effects on the efficiency of whole body energy utilization during CG. SIGNIFICANCE: This study is the first to unravel the effect of compensatory growth on the hepatic proteome of cattle using transcriptome-assisted shot gun proteomics. Proteins identified as being affected by dietary restriction and subsequent expression of compensatory growth in this study may, following appropriate validation, contribute to the identification of functional genetic variants. Such information could be harnessed within the context of genomic selection in cattle breeding programs to identify animals with a greater genetic potential to undergo compensatory growth, thus increasing the profitability of the beef sector and accelerating genetic gain.


Assuntos
Privação de Alimentos , Transcriptoma , Ração Animal/análise , Animais , Bovinos , Dieta , Fígado , Masculino , Proteômica
18.
Sci Rep ; 11(1): 13978, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234169

RESUMO

The aim was to examine the effect of rapid body weight gain during early calfhood consistent with earlier sexual development on the transcriptional profile of the hypothalamus. Angus X Holstein-Friesian heifer calves (19 ± 5 days of age) were offered a high (HI, n = 14) or moderate (MOD, n = 15) plane of nutrition from 3 to 21 weeks of age to achieve a growth rate of 1.2 kg/d and 0.5 kg/d, respectively. Following euthanasia at 21 weeks, the arcuate nucleus (ARC) region was separated from the remainder of the hypothalamus and both were subjected to RNA-Seq. HI calves exhibited altered expression of 80 and 39 transcripts in the ARC and the remaining hypothalamus, respectively (P < 0.05) including downregulation of AGRP and NPY and upregulation of POMC, previously implicated in precocious sexual development. Stress-signaling pathways were amongst the most highly dysregulated. Organ morphology, reproductive system development and function, and developmental disorder were amongst the networks derived from differentially expressed genes (DEGs) in the ARC. Gene co-expression analysis revealed DEGs within the ARC (POMC, CBLN2, CHGA) and hypothalamus (PENK) as hub genes. In conclusion, enhanced nutrition during early calfhood alters the biochemical regulation of the hypothalamus consistent with advanced sexual development in the prepubertal heifer.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Hipotálamo/metabolismo , Transcriptoma , Fatores Etários , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Bovinos , Biologia Computacional , Redes Reguladoras de Genes
19.
Theriogenology ; 172: 223-229, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34284217

RESUMO

This study was conducted to (i) evaluate the requirement for the administration of GnRH coincident with insertion of a progesterone-releasing intravaginal device (PRID) and (ii) the effect of supplementing with 400 IU eCG at PRID removal on pregnancy per AI (P/AI) in spring and autumn calving suckled beef cows, subjected to a 7-d CO-Synch + PRID timed artificial insemination (TAI) program. Suckled beef cows (n = 1408) on 62 commercial farms were enrolled and randomly assigned to either of three treatments: 1) cows received a PRID and 100 µg GnRH on Day -10, followed by 25 mg PGF2α at PRID removal (Day -3) and 100 µg GnRH 72 h later (Day 0) at TAI (Treatment 1; n: spring = 236, autumn = 248); 2) as Treatment 1, but without GnRH at PRID insertion on Day -10 (Treatment 2; n: spring = 232, autumn = 227); 3) as Treatment 1, but cows also received 400 IU eCG at PRID removal on Day -3 (Treatment 3; n: spring = 233, autumn = 232). At Day -10, ovaries were examined by ultrasonography to evaluate the presence or absence of a corpus luteum (CL) and follicle(s) ≥ 10 mm in diameter. Body condition score (BCS) was assessed on a scale of 1-5. Pregnancy diagnosis was carried out 30-35 d after TAI by transrectal ultrasonography. Data were analyzed using the GENMOD and LOGISTIC procedures of SAS. There was a treatment by season interaction for P/AI (P < 0.001). In spring, overall P/AI was 59.1% (414/701) and was affected by treatment (59.3 v 49.6 v 68.2%, for Treatments 1, 2 and 3, respectively P < 0.05). In contrast, in autumn, overall P/AI (51.5%, 364/707) was unaffected (P > 0.05) by treatment (50.1 v 53.7 v 48.7% for Treatments 1, 2 and 3, respectively). Overall, eCG had a positive effect on P/AI for cows lacking a CL at treatment initiation (P < 0.05). In addition, in cows with low BCS (≤2.25), eCG supplementation tended (P = 0.09) to improve P/AI. Seasonal differences in response to synchronization treatment may be reflective of different management regimens (grazing v confinement) and breed type and remain to be elucidated.


Assuntos
Dinoprosta , Sincronização do Estro , Animais , Bovinos , Feminino , Hormônio Liberador de Gonadotropina/farmacologia , Inseminação Artificial/veterinária , Lactação , Ovulação , Gravidez , Progesterona , Estações do Ano
20.
J Anim Sci ; 99(11)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34598276

RESUMO

Residual expressions of enteric emissions favor a more equitable identification of an animal's methanogenic potential compared with traditional measures of enteric emissions. The objective of this study was to investigate the effect of divergently ranking beef cattle for residual methane emissions (RME) on animal productivity, enteric emissions, and rumen fermentation. Dry matter intake (DMI), growth, feed efficiency, carcass output, and enteric emissions (GreenFeed emissions monitoring system) were recorded on 294 crossbred beef cattle (steers = 135 and heifers = 159; mean age 441 d (SD = 49); initial body weight (BW) of 476 kg (SD = 67)) at the Irish national beef cattle performance test center. Animals were offered a total mixed ration (77% concentrate and 23% forage; 12.6 MJ ME/kg of DM and 12% CP) ad libitum with emissions estimated for 21 d over a mean feed intake measurement period of 91 d. Animals had a mean daily methane emissions (DME) of 229.18 g/d (SD = 45.96), methane yield (MY) of 22.07 g/kg of DMI (SD = 4.06), methane intensity (MI) 0.70 g/kg of carcass weight (SD = 0.15), and RME 0.00 g/d (SD = 0.34). RME was computed as the residuals from a multiple regression model regressing DME on DMI and BW (R2 = 0.45). Animals were ranked into three groups namely high RME (>0.5 SD above the mean), medium RME (±0.5 SD above/below the mean), and low RME (>0.5 SD below the mean). Low RME animals produced 17.6% and 30.4% less (P < 0.05) DME compared with medium and high RME animals, respectively. A ~30% reduction in MY and MI was detected in low versus high RME animals. Positive correlations were apparent among all methane traits with RME most highly associated with (r = 0.86) DME. MY and MI were correlated (P < 0.05) with DMI, growth, feed efficiency, and carcass output. High RME had lower (P < 0.05) ruminal propionate compared with low RME animals and increased (P < 0.05) butyrate compared with medium and low RME animals. Propionate was negatively associated (P < 0.05) with all methane traits. Greater acetate:propionate ratio was associated with higher RME (r = 0.18; P < 0.05). Under the ad libitum feeding regime deployed here, RME was the best predictor of DME and only methane trait independent of animal productivity. Ranking animals on RME presents the opportunity to exploit interanimal variation in enteric emissions as well as providing a more equitable index of the methanogenic potential of an animal on which to investigate the underlying biological regulatory mechanisms.


Assuntos
Metano , Rúmen , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Ingestão de Alimentos , Feminino , Fermentação , Metano/metabolismo , Rúmen/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA