Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 29(37): e202300275, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37037023

RESUMO

Non-centrosymmetric spin-switchable systems are of interest for their prospective applications as magnetically active non-linear optical materials and in multiferroic devices. Chiral resolution of simple spin-crossover chelate complexes into the Δ and Λ forms offers a facile route to homochiral magnetic switches, which could be easily enantiomerically enriched. Here, we report the spontaneous resolution of a new hysteretic spin-crossover complex, [MnIII (sal2 323)]SCN ⋅ EtOH (1), into Δ and Λ forms, without the use of chiral reagents, where sal2 323 is a Schiff base resulting from condensation of 1,2-bis(3-aminopropylamino)ethane with 2-hydroxybenzaldehyde. The enantiopurity of the Δ and Λ isomers was confirmed by single crystal X-ray diffraction and circular dichroism. Quantum chemistry calculations were used to investigate the electronic structure. The opening of a wide 80 K thermal hysteresis window at high temperature highlights the potential for good magneto-optical function at ambient temperature for materials of this type.

2.
Angew Chem Int Ed Engl ; 62(18): e202217388, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36794891

RESUMO

Reversible proton-induced spin state switching of an FeIII complex in solution is observed at room temperature. A reversible magnetic response was detected in the complex, [FeIII (sal2 323)]ClO4 (1), using Evans' method 1 H NMR spectroscopy which indicated cumulative switching from low-spin to high-spin upon addition of one and two equivalents of acid. Infrared spectroscopy suggests a coordination-induced spin state switching (CISSS) effect, whereby protonation displaces the metal-phenoxo donors. The analogous complex, [FeIII (4-NEt2 -sal2 323)]ClO4 (2), with a diethylamino group on the ligand, was used to combine the magnetic change with a colorimetric response. Comparison of the protonation responses of 1 and 2 reveals that the magnetic switching is caused by perturbation of the immediate coordination sphere of the complex. These complexes constitute a new class of analyte sensor which operate by magneto-modulation, and in the case of 2, also yield a colorimetric response.

3.
Inorg Chem ; 60(9): 6167-6175, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33331784

RESUMO

We investigate giant magnetoelectric coupling at a Mn3+ spin crossover in [MnIIIL]BPh4 (L = (3,5-diBr-sal)2323) with a field-induced permanent switching of the structural, electric, and magnetic properties. An applied magnetic field induces a first-order phase transition from a high spin/low spin (HS-LS) ordered phase to a HS-only phase at 87.5 K that remains after the field is removed. We observe this unusual effect for DC magnetic fields as low as 8.7 T. The spin-state switching driven by the magnetic field in the bistable molecular material is accompanied by a change in electric polarization amplitude and direction due to a symmetry-breaking phase transition between polar space groups. The magnetoelectric coupling occurs due to a γη2 coupling between the order parameter γ related to the spin-state bistability and the symmetry-breaking order parameter η responsible for the change of symmetry between polar structural phases. We also observe conductivity occurring during the spin crossover and evaluate the possibility that it results from conducting phase boundaries. We perform ab initio calculations to understand the origin of the electric polarization change as well as the conductivity during the spin crossover. Thus, we demonstrate a giant magnetoelectric effect with a field-induced electric polarization change that is 1/10 of the record for any material.

4.
Cryst Growth Des ; 23(6): 3996-4012, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37304401

RESUMO

We report the structural and magnetic properties of two new Mn3+ complex cations in the spin crossover (SCO) [Mn(R-sal2323)]+ series, in lattices with seven different counterions in each case. We investigate the effect on the Mn3+ spin state of appending electron-withdrawing and electron-donating groups on the phenolate donors of the ligand. This was achieved by substitution of the ortho and para positions on the phenolate donors with nitro and methoxy substituents in both possible geometric isomeric forms. Using this design paradigm, the [MnL1]+ (a) and [MnL2]+ (b) complex cations were prepared by complexation of Mn3+ to the hexadentate Schiff base ligands with 3-nitro-5-methoxy-phenolate or 3-methoxy-5-nitro-phenolate substituents, respectively. A clear trend emerges with adoption of the spin triplet form in complexes 1a-7a, with the 3-nitro-5-methoxy-phenolate donors, and spin triplet, spin quintet and thermal SCO in complexes 1b-7b with the 3-methoxy-5-nitro-phenolate ligand isomer. The outcomes are discussed in terms of geometric and steric factors in the 14 new compounds and by a wider analysis of electronic choices of Mn3+ with related ligands by comparison of bond length and angular distortion data of previously reported analogues in the [Mn(R-sal2323)]+ family. The structural and magnetic data published to date suggest a barrier to switching may exist for high spin forms of Mn3+ in those complexes with the longest bond lengths and highest distortion parameters. A barrier to switching from low spin to high spin is less clear but may operate in the seven [Mn(3-NO2-5-OMe-sal2323)]+ complexes 1a-7a reported here which were all low spin in the solid state at room temperature.

5.
Cryst Growth Des ; 22(11): 6429-6439, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36345384

RESUMO

We report a single example of thermal spin crossover in a series of FeIII complexes, [FeIII(R-sal2323)]+, which typically stabilize the low-spin (S = 1/2) state. Single-crystal X-ray diffraction analysis of 53 such complexes with varying "R" groups, charge-balancing anions, and/or lattice solvation confirms bond lengths in line with an S = 1/2 ground state, with only the [FeIII(4-OMe-sal2323)]NO3 complex (1a) exhibiting longer bond lengths associated with a percentage of the spin sextet form at room temperature. Structural distortion parameters are investigated for the series. A magnetic susceptibility measurement of 1a reveals a gradual, incomplete transition, with T 1/2 = 265 K in the solid state, while Evans method NMR reveals that the sample persists in the low-spin form in solution at room temperature. Computational analysis of the spin state preferences for the cations [FeIII(4-OMe-sal2323)]+ and [FeIII(sal2323)]+ confirmed the energetic preference for the spin doublet form in both, and the thermal spin crossover in complex 1a is therefore attributed to perturbation of the crystal packing on warming.

6.
Dalton Trans ; 48(41): 15560-15566, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31342029

RESUMO

Structural, magnetic and spectroscopic data of four complex salts, [Mn(napsal2323)]NTf2, 1,[Mn(napsal2323)]ClO4, 2, [Mn(napsal2323)]BF4, 3 and [Mn(napsal2323)]NO3, 4, of the [Mn(napsal2323)]+ complex cation indicate that the Mn3+ ion is stabilized in the rare S = 1 spin triplet form in this ligand sphere. Zero-field splitting values of D = +19.6 cm-1 and |E| = 2.02 cm-1 for complex 1 were obtained by High Field Electron Paramagnetic Resonance (HFEPR) measurements conducted over a range of frequencies. Structural and magnetic data also indicate that co-crystallization of complexes 2 and 3 with 0.5 equivalents of ethanol yields the high spin S = 2 forms of the perchlorate and tetrafluoroborate solvates [Mn(napsal2323)]ClO4·0.5(C2H5OH), 2·0.5EtOH and [Mn(napsal2323)]BF4·0.5(C2H5OH), 3·0.5EtOH.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA