Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 608(7924): 795-802, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35978189

RESUMO

Although p53 inactivation promotes genomic instability1 and presents a route to malignancy for more than half of all human cancers2,3, the patterns through which heterogenous TP53 (encoding human p53) mutant genomes emerge and influence tumorigenesis remain poorly understood. Here, in a mouse model of pancreatic ductal adenocarcinoma that reports sporadic p53 loss of heterozygosity before cancer onset, we find that malignant properties enabled by p53 inactivation are acquired through a predictable pattern of genome evolution. Single-cell sequencing and in situ genotyping of cells from the point of p53 inactivation through progression to frank cancer reveal that this deterministic behaviour involves four sequential phases-Trp53 (encoding mouse p53) loss of heterozygosity, accumulation of deletions, genome doubling, and the emergence of gains and amplifications-each associated with specific histological stages across the premalignant and malignant spectrum. Despite rampant heterogeneity, the deletion events that follow p53 inactivation target functionally relevant pathways that can shape genomic evolution and remain fixed as homogenous events in diverse malignant populations. Thus, loss of p53-the 'guardian of the genome'-is not merely a gateway to genetic chaos but, rather, can enable deterministic patterns of genome evolution that may point to new strategies for the treatment of TP53-mutant tumours.


Assuntos
Carcinogênese , Progressão da Doença , Genes p53 , Genoma , Perda de Heterozigosidade , Neoplasias Pancreáticas , Proteína Supressora de Tumor p53 , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Evolução Molecular , Deleção de Genes , Genes p53/genética , Genoma/genética , Camundongos , Modelos Genéticos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteína Supressora de Tumor p53/genética
2.
Cell ; 141(3): 407-18, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20434983

RESUMO

How is chromatin architecture established and what role does it play in transcription? We show that the yeast regulatory locus UASg bears, in addition to binding sites for the activator Gal4, sites bound by the RSC complex. RSC positions a nucleosome, evidently partially unwound, in a structure that facilitates Gal4 binding to its sites. The complex comprises a barrier that imposes characteristic features of chromatin architecture. In the absence of RSC, ordinary nucleosomes encroach over the UASg and compete with Gal4 for binding. Taken with our previous work, the results show that both prior to and following induction, specific DNA-binding proteins are the predominant determinants of chromatin architecture at the GAL1/10 genes. RSC/nucleosome complexes are also found scattered around the yeast genome. Higher eukaryotic RSC lacks the specific DNA-binding determinants found on yeast RSC, and evidently Gal4 works in those organisms despite whatever obstacle broadly positioned nucleosomes present.


Assuntos
Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Galactoquinase/genética , Células HeLa , Humanos , Elementos Reguladores de Transcrição , Proteínas de Saccharomyces cerevisiae/genética , Transativadores/genética
3.
Genome Res ; 30(1): 49-61, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31727682

RESUMO

We show the use of 5'-Acrydite oligonucleotides to copolymerize single-cell DNA or RNA into balls of acrylamide gel (BAGs). Combining this step with split-and-pool techniques for creating barcodes yields a method with advantages in cost and scalability, depth of coverage, ease of operation, minimal cross-contamination, and efficient use of samples. We perform DNA copy number profiling on mixtures of cell lines, nuclei from frozen prostate tumors, and biopsy washes. As applied to RNA, the method has high capture efficiency of transcripts and sufficient consistency to clearly distinguish the expression patterns of cell lines and individual nuclei from neurons dissected from the mouse brain. By using varietal tags (UMIs) to achieve sequence error correction, we show extremely low levels of cross-contamination by tracking source-specific SNVs. The method is readily modifiable, and we will discuss its adaptability and diverse applications.


Assuntos
Acrilamida , Ácidos Nucleicos , Análise de Célula Única/métodos , Acrilamida/química , DNA , Contaminação por DNA , Variações do Número de Cópias de DNA , Dosagem de Genes , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/normas , Biblioteca Gênica , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Ácidos Nucleicos/química , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Sequência com Séries de Oligonucleotídeos/normas , Polimerização , RNA , Análise de Célula Única/normas
4.
Nucleic Acids Res ; 48(7): e40, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32083660

RESUMO

Measuring minimal residual disease in cancer has applications for prognosis, monitoring treatment and detection of recurrence. Simple sequence-based methods to detect nucleotide substitution variants have error rates (about 10-3) that limit sensitive detection. We developed and characterized the performance of MASQ (multiplex accurate sensitive quantitation), a method with an error rate below 10-6. MASQ counts variant templates accurately in the presence of millions of host genomes by using tags to identify each template and demanding consensus over multiple reads. Since the MASQ protocol multiplexes 50 target loci, we can both integrate signal from multiple variants and capture subclonal response to treatment. Compared to existing methods for variant detection, MASQ achieves an excellent combination of sensitivity, specificity and yield. We tested MASQ in a pilot study in acute myeloid leukemia (AML) patients who entered complete remission. We detect leukemic variants in the blood and bone marrow samples of all five patients, after induction therapy, at levels ranging from 10-2 to nearly 10-6. We observe evidence of sub-clonal structure and find higher target variant frequencies in patients who go on to relapse, demonstrating the potential for MASQ to quantify residual disease in AML.


Assuntos
Leucemia Mieloide Aguda/genética , Algoritmos , Genômica/métodos , Humanos , Leucemia Mieloide Aguda/terapia , Mutação , Neoplasia Residual , Projetos Piloto , Recidiva , Indução de Remissão , Sequenciamento Completo do Genoma
5.
Genes Dev ; 27(24): 2648-62, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24285714

RESUMO

Cancer cells frequently depend on chromatin regulatory activities to maintain a malignant phenotype. Here, we show that leukemia cells require the mammalian SWI/SNF chromatin remodeling complex for their survival and aberrant self-renewal potential. While Brg1, an ATPase subunit of SWI/SNF, is known to suppress tumor formation in several cell types, we found that leukemia cells instead rely on Brg1 to support their oncogenic transcriptional program, which includes Myc as one of its key targets. To account for this context-specific function, we identify a cluster of lineage-specific enhancers located 1.7 Mb downstream from Myc that are occupied by SWI/SNF as well as the BET protein Brd4. Brg1 is required at these distal elements to maintain transcription factor occupancy and for long-range chromatin looping interactions with the Myc promoter. Notably, these distal Myc enhancers coincide with a region that is focally amplified in ∼3% of acute myeloid leukemias. Together, these findings define a leukemia maintenance function for SWI/SNF that is linked to enhancer-mediated gene regulation, providing general insights into how cancer cells exploit transcriptional coactivators to maintain oncogenic gene expression programs.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos/fisiologia , Regulação Neoplásica da Expressão Gênica , Leucemia Mieloide Aguda/fisiopatologia , Proteínas Proto-Oncogênicas c-myc/genética , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos/genética , Técnicas de Silenciamento de Genes , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição/genética
6.
Nature ; 515(7526): 216-21, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25363768

RESUMO

Whole exome sequencing has proven to be a powerful tool for understanding the genetic architecture of human disease. Here we apply it to more than 2,500 simplex families, each having a child with an autistic spectrum disorder. By comparing affected to unaffected siblings, we show that 13% of de novo missense mutations and 43% of de novo likely gene-disrupting (LGD) mutations contribute to 12% and 9% of diagnoses, respectively. Including copy number variants, coding de novo mutations contribute to about 30% of all simplex and 45% of female diagnoses. Almost all LGD mutations occur opposite wild-type alleles. LGD targets in affected females significantly overlap the targets in males of lower intelligence quotient (IQ), but neither overlaps significantly with targets in males of higher IQ. We estimate that LGD mutation in about 400 genes can contribute to the joint class of affected females and males of lower IQ, with an overlapping and similar number of genes vulnerable to contributory missense mutation. LGD targets in the joint class overlap with published targets for intellectual disability and schizophrenia, and are enriched for chromatin modifiers, FMRP-associated genes and embryonically expressed genes. Most of the significance for the latter comes from affected females.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Predisposição Genética para Doença/genética , Mutação/genética , Fases de Leitura Aberta/genética , Criança , Análise por Conglomerados , Exoma/genética , Feminino , Genes , Humanos , Testes de Inteligência , Masculino , Reprodutibilidade dos Testes
7.
Genome Res ; 26(6): 844-51, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27197213

RESUMO

Copy number variants (CNVs) underlie a significant amount of genetic diversity and disease. CNVs can be detected by a number of means, including chromosomal microarray analysis (CMA) and whole-genome sequencing (WGS), but these approaches suffer from either limited resolution (CMA) or are highly expensive for routine screening (both CMA and WGS). As an alternative, we have developed a next-generation sequencing-based method for CNV analysis termed SMASH, for short multiply aggregated sequence homologies. SMASH utilizes random fragmentation of input genomic DNA to create chimeric sequence reads, from which multiple mappable tags can be parsed using maximal almost-unique matches (MAMs). The SMASH tags are then binned and segmented, generating a profile of genomic copy number at the desired resolution. Because fewer reads are necessary relative to WGS to give accurate CNV data, SMASH libraries can be highly multiplexed, allowing large numbers of individuals to be analyzed at low cost. Increased genomic resolution can be achieved by sequencing to higher depth.


Assuntos
Dosagem de Genes , Análise de Sequência de DNA , Linhagem Celular Tumoral , Biologia Computacional , Variações do Número de Cópias de DNA , Feminino , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Software
8.
Genome Res ; 25(5): 714-24, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25858951

RESUMO

Genome-wide analysis at the level of single cells has recently emerged as a powerful tool to dissect genome heterogeneity in cancer, neurobiology, and development. To be truly transformative, single-cell approaches must affordably accommodate large numbers of single cells. This is feasible in the case of copy number variation (CNV), because CNV determination requires only sparse sequence coverage. We have used a combination of bioinformatic and molecular approaches to optimize single-cell DNA amplification and library preparation for highly multiplexed sequencing, yielding a method that can produce genome-wide CNV profiles of up to a hundred individual cells on a single lane of an Illumina HiSeq instrument. We apply the method to human cancer cell lines and biopsied cancer tissue, thereby illustrating its efficiency, reproducibility, and power to reveal underlying genetic heterogeneity and clonal phylogeny. The capacity of the method to facilitate the rapid profiling of hundreds to thousands of single-cell genomes represents a key step in making single-cell profiling an easily accessible tool for studying cell lineage.


Assuntos
Variações do Número de Cópias de DNA , DNA de Neoplasias/genética , Reação em Cadeia da Polimerase Multiplex/métodos , Análise de Sequência de DNA/métodos , Análise de Célula Única/métodos , Algoritmos , Sequência de Bases , Linhagem Celular Tumoral , Genoma Humano , Humanos , Dados de Sequência Molecular
9.
Nat Methods ; 12(11): 1058-60, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26344043

RESUMO

We present Ginkgo (http://qb.cshl.edu/ginkgo), a user-friendly, open-source web platform for the analysis of single-cell copy-number variations (CNVs). Ginkgo automatically constructs copy-number profiles of cells from mapped reads and constructs phylogenetic trees of related cells. We validated Ginkgo by reproducing the results of five major studies. After comparing three commonly used single-cell amplification techniques, we concluded that degenerate oligonucleotide-primed PCR is the most consistent for CNV analysis.


Assuntos
Biologia Computacional , Variações do Número de Cópias de DNA , Genoma Humano , Oligonucleotídeos/genética , Algoritmos , Animais , Automação , Análise por Conglomerados , Drosophila , Feminino , Dosagem de Genes , Genoma , Humanos , Internet , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Masculino , Camundongos , Pan troglodytes , Filogenia , Reação em Cadeia da Polimerase , Ratos , Reprodutibilidade dos Testes , Cromossomos Sexuais , Carcinoma de Pequenas Células do Pulmão/diagnóstico , Carcinoma de Pequenas Células do Pulmão/genética , Software
10.
Nature ; 472(7341): 90-4, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21399628

RESUMO

Genomic analysis provides insights into the role of copy number variation in disease, but most methods are not designed to resolve mixed populations of cells. In tumours, where genetic heterogeneity is common, very important information may be lost that would be useful for reconstructing evolutionary history. Here we show that with flow-sorted nuclei, whole genome amplification and next generation sequencing we can accurately quantify genomic copy number within an individual nucleus. We apply single-nucleus sequencing to investigate tumour population structure and evolution in two human breast cancer cases. Analysis of 100 single cells from a polygenomic tumour revealed three distinct clonal subpopulations that probably represent sequential clonal expansions. Additional analysis of 100 single cells from a monogenomic primary tumour and its liver metastasis indicated that a single clonal expansion formed the primary tumour and seeded the metastasis. In both primary tumours, we also identified an unexpectedly abundant subpopulation of genetically diverse 'pseudodiploid' cells that do not travel to the metastatic site. In contrast to gradual models of tumour progression, our data indicate that tumours grow by punctuated clonal expansions with few persistent intermediates.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Evolução Molecular , Análise de Sequência de DNA/métodos , Análise de Célula Única/métodos , Neoplasias da Mama/diagnóstico , Carcinoma Ductal de Mama/diagnóstico , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/patologia , Pontos de Quebra do Cromossomo , Células Clonais/citologia , Diploide , Progressão da Doença , Feminino , Citometria de Fluxo , Heterogeneidade Genética , Genoma Humano/genética , Genômica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundário , Perda de Heterozigosidade
11.
Genome Res ; 23(10): 1651-62, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23739895

RESUMO

The maize genome, with its large complement of transposons and repeats, is a paradigm for the study of epigenetic mechanisms such as paramutation and imprinting. Here, we present the genome-wide map of cytosine methylation for two maize inbred lines, B73 and Mo17. CG (65%) and CHG (50%) methylation (where H = A, C, or T) is highest in transposons, while CHH (5%) methylation is likely guided by 24-nt, but not 21-nt, small interfering RNAs (siRNAs). Correlations with methylation patterns suggest that CG methylation in exons (8%) may deter insertion of Mutator transposon insertion, while CHG methylation at splice acceptor sites may inhibit RNA splicing. Using the methylation map as a guide, we used low-coverage sequencing to show that parental methylation differences are inherited by recombinant inbred lines. However, frequent methylation switches, guided by siRNA, persist for up to eight generations, suggesting that epigenetic inheritance resembling paramutation is much more common than previously supposed. The methylation map will provide an invaluable resource for epigenetic studies in maize.


Assuntos
Metilação de DNA , DNA de Plantas/genética , Genoma de Planta , Sítios de Splice de RNA , RNA de Plantas/metabolismo , Zea mays/genética , Zea mays/metabolismo , Processamento Alternativo , Elementos de DNA Transponíveis , DNA de Plantas/metabolismo , Epigênese Genética , Éxons , Regulação da Expressão Gênica de Plantas , Impressão Genômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Análise de Sequência
12.
Am J Hum Genet ; 91(2): 379-83, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22863192

RESUMO

Although heritable factors are an important determinant of risk of early-onset cancer, the majority of these malignancies appear to occur sporadically without identifiable risk factors. Germline de novo copy-number variations (CNVs) have been observed in sporadic neurocognitive and cardiovascular disorders. We explored this mechanism in 382 genomes of 116 early-onset cancer case-parent trios and unaffected siblings. Unique de novo germline CNVs were not observed in 107 breast or colon cancer trios or controls but were indeed found in 7% of 43 testicular germ cell tumor trios; this percentage exceeds background CNV rates and suggests a rare de novo genetic paradigm for susceptibility to some human malignancies.


Assuntos
Variações do Número de Cópias de DNA/genética , Predisposição Genética para Doença/genética , Genômica/métodos , Mutação em Linhagem Germinativa/genética , Neoplasias Testiculares/genética , Adulto , Humanos , Masculino , Pais , Projetos de Pesquisa
13.
Phys Biol ; 12(1): 016008, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25574741

RESUMO

Purpose. Circulating melanoma cells (CMCs) constitute a potentially important representation of time-resolved tumor biology in patients. To date, genomic characterization of CMCs has been limited due to the lack of a robust methodology capable of identifying them in a format suitable for downstream characterization. Here, we have developed a methodology to detect intact CMCs that enables phenotypic, morphometric and genomic analysis at the single cell level. Experimental design. Blood samples from 40 metastatic melanoma patients and 10 normal blood donors were prospectively collected. A panel of 7 chondroitin sulfate proteoglycan 4 (CSPG4)-specific monoclonal antibodies (mAbs) was used to immunocytochemically label CMCs. Detection was performed by automated digital fluorescence microscopy and multi-parametric computational analysis. Individual CMCs were captured by micromanipulation for whole genome amplification and copy number variation (CNV) analysis. Results. Based on CSPG4 expression and nuclear size, 1-250 CMCs were detected in 22 (55%) of 40 metastatic melanoma patients (0.5-371.5 CMCs ml(-1)). Morphometric analysis revealed that CMCs have a broad spectrum of morphologies and sizes but exhibit a relatively homogeneous nuclear size that was on average 1.5-fold larger than that of surrounding PBMCs. CNV analysis of single CMCs identified deletions of CDKN2A and PTEN, and amplification(s) of TERT, BRAF, KRAS and MDM2. Furthermore, novel chromosomal amplifications in chr12, 17 and 19 were also found. Conclusions. Our findings show that CSPG4 expressing CMCs can be found in the majority of advanced melanoma patients. High content analysis of this cell population may contribute to the design of effective personalized therapies in patients with melanoma.


Assuntos
Genoma Humano/genética , Melanoma/genética , Melanoma/patologia , Células Neoplásicas Circulantes/patologia , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Feminino , Genômica , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias
14.
Proc Natl Acad Sci U S A ; 109(3): E103-10, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22207624

RESUMO

Genomic copy number variation underlies genetic disorders such as autism, schizophrenia, and congenital heart disease. Copy number variations are commonly detected by array based comparative genomic hybridization of sample to reference DNAs, but probe and operational variables combine to create correlated system noise that degrades detection of genetic events. To correct for this we have explored hybridizations in which no genetic signal is expected, namely "self-self" hybridizations (SSH) comparing DNAs from the same genome. We show that SSH trap a variety of correlated system noise present also in sample-reference (test) data. Through singular value decomposition of SSH, we are able to determine the principal components (PCs) of this noise. The PCs themselves offer deep insights into the sources of noise, and facilitate detection of artifacts. We present evidence that linear and piecewise linear correction of test data with the PCs does not introduce detectable spurious signal, yet improves signal-to-noise metrics, reduces false positives, and facilitates copy number determination.


Assuntos
Variações do Número de Cópias de DNA/genética , Bases de Dados Genéticas , Hibridização Genética , Sondas de DNA/metabolismo , Genoma Humano/genética , Humanos , Masculino , Análise de Componente Principal , Padrões de Referência
15.
Hum Genet ; 133(1): 11-27, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23979609

RESUMO

Congenital heart disease (CHD) is the most common congenital malformation, with evidence of a strong genetic component. We analyzed data from 223 consecutively ascertained families, each consisting of at least one child affected by a conotruncal defect (CNT) or hypoplastic left heart disease (HLHS) and both parents. The NimbleGen HD2-2.1 comparative genomic hybridization platform was used to identify de novo and rare inherited copy number variants (CNVs). Excluding 10 cases with 22q11.2 DiGeorge deletions, we validated de novo CNVs in 8 % of 148 probands with CNTs, 12.7 % of 71 probands with HLHS and none in 4 probands with both. Only 2 % of control families showed a de novo CNV. We also identified a group of ultra-rare inherited CNVs that occurred de novo in our sample, contained a candidate gene for CHD, recurred in our sample or were present in an affected sibling. We confirmed the contribution to CHD of copy number changes in genes such as GATA4 and NODAL and identified several genes in novel recurrent CNVs that may point to novel CHD candidate loci. We also found CNVs previously associated with highly variable phenotypes and reduced penetrance, such as dup 1q21.1, dup 16p13.11, dup 15q11.2-13, dup 22q11.2, and del 2q23.1. We found that the presence of extra-cardiac anomalies was not related to the frequency of CNVs, and that there was no significant difference in CNV frequency or specificity between the probands with CNT and HLHS. In agreement with other series, we identified likely causal CNVs in 5.6 % of our total sample, half of which were de novo.


Assuntos
Variações do Número de Cópias de DNA/genética , Cardiopatias Congênitas/genética , Síndrome do Coração Esquerdo Hipoplásico/genética , Pré-Escolar , Hibridização Genômica Comparativa , Feminino , Deleção de Genes , Duplicação Gênica , Genoma Humano , Humanos , Lactente , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Reprodutibilidade dos Testes
16.
Adv Mater Technol ; 9(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38645306

RESUMO

Single-cell genomics has revolutionized tissue analysis by revealing the genetic program of individual cells. The key aspect of the technology is the use of barcoded beads to unambiguously tag sequences originating from a single cell. The generation of unique barcodes on beads is mainly achieved by split-pooling methods, which are labor-intensive due to repeated washing steps. Towards the automation of the split-pooling method, we developed a simple method to magnetize hydrogel beads. We show that these hydrogel beads provide increased yields and washing efficiencies for purification procedures. They are also fully compatible with single-cell sequencing using the BAG-Seq workflow. Our work opens the automation of the split-pooling technique, which will improve single-cell genomic workflows.

17.
Science ; 386(6720): eadk9167, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39446948

RESUMO

Men taking antioxidant vitamin E supplements have increased prostate cancer (PC) risk. However, whether pro-oxidants protect from PC remained unclear. In this work, we show that a pro-oxidant vitamin K precursor [menadione sodium bisulfite (MSB)] suppresses PC progression in mice, killing cells through an oxidative cell death: MSB antagonizes the essential class III phosphatidylinositol (PI) 3-kinase VPS34-the regulator of endosome identity and sorting-through oxidation of key cysteines, pointing to a redox checkpoint in sorting. Testing MSB in a myotubular myopathy model that is driven by loss of MTM1-the phosphatase antagonist of VPS34-we show that dietary MSB improved muscle histology and function and extended life span. These findings enhance our understanding of pro-oxidant selectivity and show how definition of the pathways they impinge on can give rise to unexpected therapeutic opportunities.


Assuntos
Classe III de Fosfatidilinositol 3-Quinases , Doenças Musculares , Oxidantes , Neoplasias da Próstata , Vitamina K 3 , Animais , Humanos , Masculino , Camundongos , Classe III de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Cisteína/metabolismo , Suplementos Nutricionais , Longevidade/efeitos dos fármacos , Oxidantes/administração & dosagem , Oxidantes/farmacologia , Oxirredução , Neoplasias da Próstata/tratamento farmacológico , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Vitamina K 3/administração & dosagem , Vitamina K 3/farmacologia , Doenças Musculares/tratamento farmacológico
18.
Genome Res ; 20(1): 68-80, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19903760

RESUMO

Cancer progression in humans is difficult to infer because we do not routinely sample patients at multiple stages of their disease. However, heterogeneous breast tumors provide a unique opportunity to study human tumor progression because they still contain evidence of early and intermediate subpopulations in the form of the phylogenetic relationships. We have developed a method we call Sector-Ploidy-Profiling (SPP) to study the clonal composition of breast tumors. SPP involves macro-dissecting tumors, flow-sorting genomic subpopulations by DNA content, and profiling genomes using comparative genomic hybridization (CGH). Breast carcinomas display two classes of genomic structural variation: (1) monogenomic and (2) polygenomic. Monogenomic tumors appear to contain a single major clonal subpopulation with a highly stable chromosome structure. Polygenomic tumors contain multiple clonal tumor subpopulations, which may occupy the same sectors, or separate anatomic locations. In polygenomic tumors, we show that heterogeneity can be ascribed to a few clonal subpopulations, rather than a series of gradual intermediates. By comparing multiple subpopulations from different anatomic locations, we have inferred pathways of cancer progression and the organization of tumor growth.


Assuntos
Neoplasias da Mama , Carcinoma Ductal de Mama , Hibridização Genômica Comparativa/métodos , Progressão da Doença , Citometria de Fluxo/métodos , Heterogeneidade Genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/patologia , Pontos de Quebra do Cromossomo , Feminino , Dosagem de Genes , Humanos , Hibridização in Situ Fluorescente , Informática , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Ploidias , Análise de Sequência de DNA
19.
Cancers (Basel) ; 16(1)2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38201488

RESUMO

Resistance to standard of care taxane and androgen deprivation therapy (ADT) causes the vast majority of prostate cancer (PC) deaths worldwide. We have developed RapidCaP, an autochthonous genetically engineered mouse model of PC. It is driven by the loss of PTEN and p53, the most common driver events in PC patients with life-threatening diseases. As in human ADT, surgical castration of RapidCaP animals invariably results in disease relapse and death from the metastatic disease burden. Fatty Acid Binding Proteins (FABPs) are a large family of signaling lipid carriers. They have been suggested as drivers of multiple cancer types. Here we combine analysis of primary cancer cells from RapidCaP (RCaP cells) with large-scale patient datasets to show that among the 10 FABP paralogs, FABP5 is the PC-relevant target. Next, we show that RCaP cells are uniquely insensitive to both ADT and taxane treatment compared to a panel of human PC cell lines. Yet, they share an exquisite sensitivity to the small-molecule FABP5 inhibitor SBFI-103. We show that SBFI-103 is well tolerated and can strongly eliminate RCaP tumor cells in vivo. This provides a pre-clinical platform to fight incurable PC and suggests an important role for FABP5 in PTEN-deficient PC.

20.
Genome Res ; 19(9): 1593-605, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19581485

RESUMO

DNA methylation stabilizes developmentally programmed gene expression states. Aberrant methylation is associated with disease progression and is a common feature of cancer genomes. Presently, few methods enable quantitative, large-scale, single-base resolution mapping of DNA methylation states in desired regions of a complex mammalian genome. Here, we present an approach that combines array-based hybrid selection and massively parallel bisulfite sequencing to profile DNA methylation in genomic regions spanning hundreds of thousands of bases. This single molecule strategy enables methylation variable positions to be quantitatively examined with high sampling precision. Using bisulfite capture, we assessed methylation patterns across 324 randomly selected CpG islands (CGI) representing more than 25,000 CpG sites. A single lane of Illumina sequencing permitted methylation states to be definitively called for >90% of target sties. The accuracy of the hybrid-selection approach was verified using conventional bisulfite capillary sequencing of cloned PCR products amplified from a subset of the selected regions. This confirmed that even partially methylated states could be successfully called. A comparison of human primary and cancer cells revealed multiple differentially methylated regions. More than 25% of islands showed complex methylation patterns either with partial methylation states defining the entire CGI or with contrasting methylation states appearing in specific regional blocks within the island. We observed that transitions in methylation state often correlate with genomic landmarks, including transcriptional start sites and intron-exon junctions. Methylation, along with specific histone marks, was enriched in exonic regions, suggesting that chromatin states can foreshadow the content of mature mRNAs.


Assuntos
Ilhas de CpG/genética , Metilação de DNA , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Sequência de DNA/métodos , Sulfitos/química , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica , Genoma Humano , Humanos , Polimorfismo de Nucleotídeo Único , Neoplasias Cutâneas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA