Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 621(7977): 179-187, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37648857

RESUMO

Tissue resident memory CD8+ T (TRM) cells offer rapid and long-term protection at sites of reinfection1. Tumour-infiltrating lymphocytes with characteristics of TRM cells maintain enhanced effector functions, predict responses to immunotherapy and accompany better prognoses2,3. Thus, an improved understanding of the metabolic strategies that enable tissue residency by T cells could inform new approaches to empower immune responses in tissues and solid tumours. Here, to systematically define the basis for the metabolic reprogramming supporting TRM cell differentiation, survival and function, we leveraged in vivo functional genomics, untargeted metabolomics and transcriptomics of virus-specific memory CD8+ T cell populations. We found that memory CD8+ T cells deployed a range of adaptations to tissue residency, including reliance on non-steroidal products of the mevalonate-cholesterol pathway, such as coenzyme Q, driven by increased activity of the transcription factor SREBP2. This metabolic adaptation was most pronounced in the small intestine, where TRM cells interface with dietary cholesterol and maintain a heightened state of activation4, and was shared by functional tumour-infiltrating lymphocytes in diverse tumour types in mice and humans. Enforcing synthesis of coenzyme Q through deletion of Fdft1 or overexpression of PDSS2 promoted mitochondrial respiration, memory T cell formation following viral infection and enhanced antitumour immunity. In sum, through a systematic exploration of TRM cell metabolism, we reveal how these programs can be leveraged to fuel memory CD8+ T cell formation in the context of acute infections and enhance antitumour immunity.


Assuntos
Linfócitos T CD8-Positivos , Linfócitos do Interstício Tumoral , Neoplasias , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Respiração Celular , Colesterol/metabolismo , Colesterol/farmacologia , Memória Imunológica , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Metabolômica , Ácido Mevalônico/metabolismo , Neoplasias/imunologia , Ubiquinona/metabolismo , Viroses/imunologia , Vírus/imunologia , Mitocôndrias/metabolismo
2.
Immunol Rev ; 317(1): 71-94, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36999733

RESUMO

The mevalonate pathway is an essential metabolic pathway in T cells regulating development, proliferation, survival, differentiation, and effector functions. The mevalonate pathway is a complex, branched pathway composed of many enzymes that ultimately generate cholesterol and nonsterol isoprenoids. T cells must tightly control metabolic flux through the branches of the mevalonate pathway to ensure sufficient isoprenoids and cholesterol are available to meet cellular demands. Unbalanced metabolite flux through the sterol or the nonsterol isoprenoid branch is metabolically inefficient and can have deleterious consequences for T cell fate and function. Accordingly, there is tight regulatory control over metabolic flux through the branches of this essential lipid synthetic pathway. In this review we provide an overview of how the branches of the mevalonate pathway are regulated in T cells and discuss our current understanding of the relationship between mevalonate metabolism, cholesterol homeostasis and T cell function.


Assuntos
Ácido Mevalônico , Linfócitos T , Humanos , Ácido Mevalônico/metabolismo , Linfócitos T/metabolismo , Colesterol/metabolismo , Redes e Vias Metabólicas , Terpenos/metabolismo
3.
Mol Ther ; 29(7): 2335-2349, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-33647456

RESUMO

Chimeric antigen receptor (CAR) T cell therapy has led to impressive clinical responses in patients with hematological malignancies; however, its effectiveness in patients with solid tumors has been limited. While CAR T cells for the treatment of advanced prostate and pancreas cancer, including those targeting prostate stem cell antigen (PSCA), are being clinically evaluated and are anticipated to show bioactivity, their safety and the impact of the immunosuppressive tumor microenvironment (TME) have not been faithfully explored preclinically. Using a novel human PSCA knockin (hPSCA-KI) immunocompetent mouse model, we evaluated the safety and therapeutic efficacy of PSCA-CAR T cells. We demonstrated that cyclophosphamide (Cy) pre-conditioning significantly modified the immunosuppressive TME and was required to uncover the efficacy of PSCA-CAR T cells in metastatic prostate and pancreas cancer models, with no observed toxicities in normal tissues with endogenous expression of PSCA. This combination dampened the immunosuppressive TME, generated pro-inflammatory myeloid and T cell signatures in tumors, and enhanced the recruitment of antigen-presenting cells, as well as endogenous and adoptively transferred T cells, resulting in long-term anti-tumor immunity.


Assuntos
Ciclofosfamida/farmacologia , Imunoterapia Adotiva/métodos , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias Pancreáticas/terapia , Neoplasias da Próstata/terapia , Microambiente Tumoral , Animais , Antígenos de Neoplasias/genética , Apoptose , Proliferação de Células , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Agonistas Mieloablativos/farmacologia , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
bioRxiv ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38766019

RESUMO

Breast cancer brain metastases (BCBM) are a significant cause of mortality and are incurable. Thus, identifying BCBM targets that reduce morbidity and mortality is critical. BCBM upregulate Stearoyl-CoA Desaturase (SCD), an enzyme that catalyzes the synthesis of monounsaturated fatty acids, suggesting a potential metabolic vulnerability of BCBM. In this study, we tested the effect of a brain-penetrant clinical-stage inhibitor of SCD (SCDi), on breast cancer cells and mouse models of BCBM. Lipidomics, qPCR, and western blot were used to study the in vitro effects of SCDi. Single-cell RNA sequencing was used to explore the effects of SCDi on cancer and immune cells in a BCBM mouse model. Pharmacological inhibition of SCD markedly reshaped the lipidome of breast cancer cells and resulted in endoplasmic reticulum stress, DNA damage, loss of DNA damage repair, and cytotoxicity. Importantly, SCDi alone or combined with a PARP inhibitor prolonged the survival of BCBM-bearing mice. When tested in a syngeneic mouse model of BCBM, scRNAseq revealed that pharmacological inhibition of SCD enhanced antigen presentation by dendritic cells, was associated with a higher interferon signaling, increased the infiltration of cytotoxic T cells, and decreased the proportion of exhausted T cells and regulatory T cells in the tumor microenvironment (TME). Additionally, pharmacological inhibition of SCD decreased engagement of immunosuppressive pathways, including the PD-1:PD-L1/PD-L2 and PVR/TIGIT axes. These findings suggest that SCD inhibition could be an effective strategy to intrinsically reduce tumor growth and reprogram anti-tumor immunity in the brain microenvironment to treat BCBM.

5.
Mol Ther Oncol ; 32(2): 200789, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38939825

RESUMO

Advancing chimeric antigen receptor (CAR)-engineered T cells for the treatment of solid tumors is a major focus in the field of cellular immunotherapy. Several hurdles have hindered similar CAR T cell clinical responses in solid tumors as seen in hematological malignancies. These challenges include on-target off-tumor toxicities, which have inspired efforts to optimize CARs for improved tumor antigen selectivity and overall safety. We recently developed a CAR T cell therapy targeting prostate stem cell antigen (PSCA) for prostate and pancreatic cancers, showing improved preclinical antitumor activity and T cell persistence by optimizing the intracellular co-stimulatory domain. Similar studies were undertaken to optimize HER2-directed CAR T cells with modifications to the intracellular co-stimulatory domain for selective targeting of breast cancer brain metastasis. In the present study, we evaluate various nonsignaling extracellular spacers in these CARs to further improve tumor antigen selectivity. Our findings suggest that length and structure of the extracellular spacer can dictate the ability of CARs to selectively target tumor cells with high antigen density, while sparing cells with low antigen density. This study contributes to CAR construct design considerations and expands our knowledge of tuning solid tumor CAR T cell therapies for improved safety and efficacy.

6.
Oncoimmunology ; 7(2): e1380764, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29308300

RESUMO

Advancing chimeric antigen receptor (CAR)-engineered adoptive T cells for the treatment of solid cancers is a major focus in the field of immunotherapy, given impressive recent clinical responses in hematological malignancies. Prostate cancer may be amenable to T cell-based immunotherapy since several tumor antigens, including prostate stem-cell antigen (PSCA), are widely over-expressed in metastatic disease. While antigen selectivity of CARs for solid cancers is crucial, it is problematic due to the absence of truly restricted tumor antigen expression and potential safety concerns with "on-target off-tumor" activity. Here, we show that the intracellular co-stimulatory signaling domain can determine a CAR's sensitivity for tumor antigen expression. A 4-1BB intracellular co-stimulatory signaling domain in PSCA-CARs confers improved selectivity for higher tumor antigen density, reduced T cell exhaustion phenotype, and equivalent tumor killing ability compared to PSCA-CARs containing the CD28 co-stimulatory signaling domain. PSCA-CARs exhibit robust in vivo anti-tumor activity in patient-derived bone-metastatic prostate cancer xenograft models, and 4-1BB-containing CARs show superior T cell persistence and control of disease compared with CD28-containing CARs. Our study demonstrates the importance of co-stimulation in defining an optimal CAR T cell, and also highlights the significance of clinically relevant models in developing solid cancer CAR T cell therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA