Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 310
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Syst Biol ; 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527840

RESUMO

The Australian continent's size and isolation make it an ideal place for studying the accumulation and evolution of biodiversity. Long separated from the ancient supercontinent Gondwana, most of Australia's plants and animals are unique and endemic, including the continent's frogs. Australian frogs comprise a remarkable ecological and morphological diversity categorized into a small number of distantly related radiations. We present a phylogenomic hypothesis based on an exon-capture dataset that spans the main clades of Australian myobatrachoid, pelodryadid hyloid, and microhylid frogs. Our time-calibrated phylogenomic-scale phylogeny identifies great disparity in the relative ages of these groups which vary from Gondwanan relics to recent immigrants from Asia and include arguably the continent's oldest living vertebrate radiation. This age stratification provides insight into the colonization of⁠, and diversification on, the Australian continent through deep time, during periods of dramatic climatic and community changes. Contemporary Australian frog diversity highlights the adaptive capacity of anurans, particularly in response to heat and aridity, and explains why they are one of the continent's most visible faunas.

2.
PLoS Biol ; 19(6): e3001210, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34061821

RESUMO

Global biodiversity loss is a profound consequence of human activity. Disturbingly, biodiversity loss is greater than realized because of the unknown number of undocumented species. Conservation fundamentally relies on taxonomic recognition of species, but only a fraction of biodiversity is described. Here, we provide a new quantitative approach for prioritizing rigorous taxonomic research for conservation. We implement this approach in a highly diverse vertebrate group-Australian lizards and snakes. Of 870 species assessed, we identified 282 (32.4%) with taxonomic uncertainty, of which 17.6% likely comprise undescribed species of conservation concern. We identify 24 species in need of immediate taxonomic attention to facilitate conservation. Using a broadly applicable return-on-investment framework, we demonstrate the importance of prioritizing the fundamental work of identifying species before they are lost.


Assuntos
Biodiversidade , Classificação , Pesquisa , Animais , Austrália , Lagartos/classificação , Serpentes/classificação
3.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33836564

RESUMO

The diversity of genome sizes across the tree of life is of key interest in evolutionary biology. Various correlates of variation in genome size, such as accumulation of transposable elements (TEs) or rate of DNA gain and loss, are well known, but the underlying molecular mechanisms driving or constraining genome size are poorly understood. Here, we study one of the smallest genomes among frogs characterized thus far, that of the ornate burrowing frog (Platyplectrum ornatum) from Australia, and compare it to other published frog and vertebrate genomes to examine the forces driving reduction in genome size. At ∼1.06 gigabases (Gb), the P. ornatum genome is like that of birds, revealing four major mechanisms underlying TE dynamics: reduced abundance of all major classes of TEs; increased net deletion bias in TEs; drastic reduction in intron lengths; and expansion via gene duplication of the repertoire of TE-suppressing Piwi genes, accompanied by increased expression of Piwi-interacting RNA (piRNA)-based TE-silencing pathway genes in germline cells. Transcriptomes from multiple tissues in both sexes corroborate these results and provide insight into sex-differentiation pathways in Platyplectrum Genome skimming of two closely related frog species (Lechriodus fletcheri and Limnodynastes fletcheri) confirms a reduction in TEs as a major driver of genome reduction in Platyplectrum and supports a macroevolutionary scenario of small genome size in frogs driven by convergence in life history, especially rapid tadpole development and tadpole diet. The P. ornatum genome offers a model for future comparative studies on mechanisms of genome size reduction in amphibians and vertebrates generally.


Assuntos
Anuros/genética , Aves/genética , Tamanho do Genoma , Animais , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Genoma , Cariotipagem , Masculino , Anotação de Sequência Molecular , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reprodução/genética , Análise de Sequência de DNA/métodos , Cromossomos Sexuais , Processos de Determinação Sexual , Comportamento Sexual Animal
4.
Syst Biol ; 71(2): 286-300, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34259868

RESUMO

Understanding the factors that cause heterogeneity among gene trees can increase the accuracy of species trees. Discordant signals across the genome are commonly produced by incomplete lineage sorting (ILS) and introgression, which in turn can result in reticulate evolution. Species tree inference using the multispecies coalescent is designed to deal with ILS and is robust to low levels of introgression, but extensive introgression violates the fundamental assumption that relationships are strictly bifurcating. In this study, we explore the phylogenomics of the iconic Liolaemus subgenus of South American lizards, a group of over 100 species mostly distributed in and around the Andes mountains. Using mitochondrial DNA (mtDNA) and genome-wide restriction site-associated DNA sequencing (RADseq; nDNA hereafter), we inferred a time-calibrated mtDNA gene tree, nDNA species trees, and phylogenetic networks. We found high levels of discordance between mtDNA and nDNA, which we attribute in part to extensive ILS resulting from rapid diversification. These data also reveal extensive and deep introgression, which combined with rapid diversification, explain the high level of phylogenetic discordance. We discuss these findings in the context of Andean orogeny and glacial cycles that fragmented, expanded, and contracted species distributions. Finally, we use the new phylogeny to resolve long-standing taxonomic issues in one of the most studied lizard groups in the New World.[Andes; ddRADSeq; introgression; lizards; mtDNA; reptiles; SNPs.].


Assuntos
Lagartos , Animais , DNA Mitocondrial/genética , Genoma , Lagartos/genética , Filogenia , América do Sul
5.
PLoS Genet ; 16(5): e1008769, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32392206

RESUMO

Polyploidy has played an important role in evolution across the tree of life but it is still unclear how polyploid lineages may persist after their initial formation. While both common and well-studied in plants, polyploidy is rare in animals and generally less understood. The Australian burrowing frog genus Neobatrachus is comprised of six diploid and three polyploid species and offers a powerful animal polyploid model system. We generated exome-capture sequence data from 87 individuals representing all nine species of Neobatrachus to investigate species-level relationships, the origin and inheritance mode of polyploid species, and the population genomic effects of polyploidy on genus-wide demography. We describe rapid speciation of diploid Neobatrachus species and show that the three independently originated polyploid species have tetrasomic or mixed inheritance. We document higher genetic diversity in tetraploids, resulting from widespread gene flow between the tetraploids, asymmetric inter-ploidy gene flow directed from sympatric diploids to tetraploids, and isolation of diploid species from each other. We also constructed models of ecologically suitable areas for each species to investigate the impact of climate on differing ploidy levels. These models suggest substantial change in suitable areas compared to past climate, which correspond to population genomic estimates of demographic histories. We propose that Neobatrachus diploids may be suffering the early genomic impacts of climate-induced habitat loss, while tetraploids appear to be avoiding this fate, possibly due to widespread gene flow. Finally, we demonstrate that Neobatrachus is an attractive model to study the effects of ploidy on the evolution of adaptation in animals.


Assuntos
Anuros/classificação , Anuros/genética , Sequenciamento do Exoma/métodos , Poliploidia , Animais , Austrália , Ecossistema , Evolução Molecular , Fluxo Gênico , Especiação Genética , Filogenia , Simpatria
6.
Mol Ecol ; 31(17): 4527-4543, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35780470

RESUMO

When closely related species come into contact via range expansion, both may experience reduced fitness as a result of the interaction. Selection is expected to favour traits that minimize costly interspecies reproductive interactions (such as mismating) via a phenomenon called reproductive character displacement (RCD). Research on RCD frequently assumes secondary contact between species, but the geographical history of species interactions is often unknown. Population genomic data permit tests of geographical hypotheses about species origins and secondary contact through range expansion. We used population genomic data from single nucleotide polymorphisms (SNPs), mitochondrial sequence data, advertisement call data and morphological data to investigate a species complex of toadlets (Uperoleia borealis, U. crassa, U. inundata) from northern Australia. Although the three species of frogs were morphologically indistinguishable in our analysis, we determined that U. crassa and U. inundata form a single species (synonymized here) based on an absence of genomic divergence. SNP data identified the phylogeographical origin of U. crassa as the Top End, with subsequent westward invasion into the range of U. borealis in the Kimberley. We identified six F1 hybrids, all of which had the U. borealis mitochondrial haplotype, suggesting unidirectional hybridization. Consistent with the RCD hypothesis, U. borealis and U. crassa sexual signals differ more in sympatry than in allopatry. Hybrid males have intermediate calls, which probably reduces attractiveness to females. Integrating population genomic data, mitochondrial sequencing, morphology and behavioural approaches provides an unusually detailed collection of evidence for reproductive character displacement following range expansion and secondary contact.


Assuntos
Anuros , Metagenômica , Animais , Anuros/genética , Feminino , Masculino , Filogeografia , Reprodução/genética , Simpatria
7.
Mol Phylogenet Evol ; 173: 107516, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35577290

RESUMO

Genomic data are a powerful tool for the elucidation of evolutionary patterns at the population level and above. The combined analysis of genomic and morphological data can result in species delimitation hypotheses that reflect evolutionary history better than traditional taxonomy or any individual source of evidence. Here, we used thousands of single nucleotide polymorphisms, mitochondrial sequences, and comprehensive morphological data to characterize the evolutionary history of the ridge-tailed monitors in the Varanus acanthurus complex (V. acanthurus, V. baritji, and V. storri), a group of saxicolous lizards with a wide distribution in Australia, the driest vegetated continent. We found substantial genetic structure in the group and identify nine geographically clustered populations. Based on admixture patterns and species delimitation analyses we propose a taxonomic scheme that differs from current taxonomy. We consider V. acanthurus as monotypic, synonymize V. baritji with V. a. insulanicus (as a redefined V. insulanicus), elevate the subspecies of V. storri to full species (V. storri and V. ocreatus), and describe a new species from a previously identified center of endemism. The relationships among the species remain unresolved, likely as a result of fast speciation. Our study highlights the capability of large datasets to illuminate admixture patterns, biogeographic history, and species limits, even when phylogeny is not completely resolved. Furthermore, our results highlight the impact that the Cenozoic aridification of Australia had on saxicolous taxa and the role of mesic rocky escarpments as refugia. These habitats apparently allowed the persistence of lineages that became sources of colonization for arid environments.


Assuntos
Lagartos , Animais , Evolução Biológica , Ecossistema , Genoma , Filogenia
8.
Syst Biol ; 70(5): 877-890, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-33512509

RESUMO

Hybridization between species occurs more frequently in vertebrates than traditionally thought, but distinguishing ancient hybridization from other phenomena that generate similar evolutionary patterns remains challenging. Here, we used a comprehensive workflow to discover evidence of ancient hybridization between the Komodo dragon (Varanus komodoensis) from Indonesia and a common ancestor of an Australian group of monitor lizards known colloquially as sand monitors. Our data comprise $>$300 nuclear loci, mitochondrial genomes, phenotypic data, fossil and contemporary records, and past/present climatic data. We show that the four sand monitor species share more nuclear alleles with $V$. komodoensis than expected given a bifurcating phylogeny, likely as a result of hybridization between the latter species and a common ancestor of sand monitors. Sand monitors display phenotypes that are intermediate between their closest relatives and $V$. komodoensis. Biogeographic analyses suggest that $V$. komodoensis and ancestral sand monitors co-occurred in northern Australia. In agreement with the fossil record, this provides further evidence that the Komodo dragon once inhabited the Australian continent. Our study shows how different sources of evidence can be used to thoroughly characterize evolutionary histories that deviate from a treelike pattern, that hybridization can have long-lasting effects on phenotypes, and that detecting hybridization can improve our understanding of evolutionary and biogeographic patterns.[Biogeography; introgression; Komodo dragon; phylogenetic networks; phylogenomics; reticulation; Varanus.].


Assuntos
Lagartos , Animais , Austrália , Fósseis , Hibridização Genética , Lagartos/genética , Filogenia
9.
Syst Biol ; 70(1): 120-132, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32521014

RESUMO

Organismal interactions drive the accumulation of diversity by influencing species ranges, morphology, and behavior. Interactions vary from agonistic to cooperative and should result in predictable patterns in trait and range evolution. However, despite a conceptual understanding of these processes, they have been difficult to model, particularly on macroevolutionary timescales and across broad geographic spaces. Here, we investigate the influence of biotic interactions on trait evolution and community assembly in monitor lizards (Varanus). Monitors are an iconic radiation with a cosmopolitan distribution and the greatest size disparity of any living terrestrial vertebrate genus. Between the colossal Komodo dragon Varanus komodoensis and the smallest Australian dwarf goannas, Varanus length and mass vary by multiple orders of magnitude. To test the hypothesis that size variation in this genus was driven by character displacement, we extended existing phylogenetic comparative methods which consider lineage interactions to account for dynamic biogeographic history and apply these methods to Australian monitors and marsupial predators. Incorporating both exon-capture molecular and morphological data sets we use a combined evidence approach to estimate the relationships among living and extinct varaniform lizards. Our results suggest that communities of Australian Varanus show high functional diversity as a result of continent-wide interspecific competition among monitors but not with faunivorous marsupials. We demonstrate that patterns of trait evolution resulting from character displacement on continental scales are recoverable from comparative data and highlight that these macroevolutionary patterns may develop in parallel across widely distributed sympatric groups.[Character displacement; comparative methods; phylogenetics; trait evolution; Varanus.].


Assuntos
Lagartos , Animais , Austrália , Tamanho Corporal , Lagartos/genética , Fenótipo , Filogenia
10.
Syst Biol ; 70(1): 49-66, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32359157

RESUMO

Molecular phylogenies have yielded strong support for many parts of the amphibian Tree of Life, but poor support for the resolution of deeper nodes, including relationships among families and orders. To clarify these relationships, we provide a phylogenomic perspective on amphibian relationships by developing a taxon-specific Anchored Hybrid Enrichment protocol targeting hundreds of conserved exons which are effective across the class. After obtaining data from 220 loci for 286 species (representing 94% of the families and 44% of the genera), we estimate a phylogeny for extant amphibians and identify gene tree-species tree conflict across the deepest branches of the amphibian phylogeny. We perform locus-by-locus genealogical interrogation of alternative topological hypotheses for amphibian monophyly, focusing on interordinal relationships. We find that phylogenetic signal deep in the amphibian phylogeny varies greatly across loci in a manner that is consistent with incomplete lineage sorting in the ancestral lineage of extant amphibians. Our results overwhelmingly support amphibian monophyly and a sister relationship between frogs and salamanders, consistent with the Batrachia hypothesis. Species tree analyses converge on a small set of topological hypotheses for the relationships among extant amphibian families. These results clarify several contentious portions of the amphibian Tree of Life, which in conjunction with a set of vetted fossil calibrations, support a surprisingly younger timescale for crown and ordinal amphibian diversification than previously reported. More broadly, our study provides insight into the sources, magnitudes, and heterogeneity of support across loci in phylogenomic data sets.[AIC; Amphibia; Batrachia; Phylogeny; gene tree-species tree discordance; genomics; information theory.].


Assuntos
Fósseis , Genômica , Animais , Anuros , Humanos , Filogenia
11.
Biol Lett ; 18(12): 20220360, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36541096

RESUMO

Lineages may diversify when they encounter available ecological niches. Adaptive divergence by ecological opportunity often appears to follow the invasion of a new environment with open ecological space. This evolutionary process is hypothesized to explain the explosive diversification of numerous Australian vertebrate groups following the collision of the Eurasian and Australian plates 25 Mya. One of these groups is the pythons, which demonstrate their greatest phenotypic and ecological diversity in Australo-Papua (Australia and New Guinea). Here, using an updated and near complete time-calibrated phylogenomic hypothesis of the group, we show that following invasion of this region, pythons experienced a sudden burst of speciation rates coupled with multiple instances of accelerated phenotypic evolution in head and body shape and body size. These results are consistent with adaptive radiation theory with an initial rapid niche-filling phase and later slow-down approaching niche saturation. We discuss these findings in the context of other Australo-Papuan adaptive radiations and the importance of incorporating adaptive diversification systems that are not extraordinarily species-rich but ecomorphologically diverse to understand how biodiversity is generated.


Assuntos
Boidae , Animais , Austrália , Filogenia , Ecossistema , Biodiversidade , Evolução Biológica , Especiação Genética
12.
Brain Behav Evol ; 97(5): 265-273, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34983044

RESUMO

The habenula is a small structure in the brain that acts as a relay station for neural information, helping to modulate behaviour in response to variable and unpredictable stimuli. Broadly, it is evolutionarily conserved in structure and connectivity across vertebrates and is the most prominent bilaterally asymmetric structure in the brain. Nonetheless, comparative evolutionary studies of the habenula are virtually non-existent. Here, we examine the volumes of the medial and lateral habenular subregions, in both hemispheres, across a group of Australian agamid lizards in the genus Ctenophorus. In males, we found bilaterally asymmetrical selection on the lateral habenula to become smaller with increasing intensity of sexual selection, possibly as a mechanism to increase aggressive responses. In females, we found bilaterally symmetrical selection on both the medial and lateral subregions to become smaller with increasing sexual selection. This is consistent with sexual selection increasing motivation to reproduce and the habenula's well-characterized role in controlling and modifying responses to rewarding stimuli. However, as there are currently no studies addressing habenular function in reptiles, it is difficult to draw more precise conclusions. As has happened recently in biomedical neuroscience, it is time for the habenula to receive greater attention in evolutionary neuroscience.


Assuntos
Habenula , Lagartos , Animais , Austrália , Evolução Biológica , Feminino , Habenula/fisiologia , Masculino , Seleção Sexual
13.
Mol Phylogenet Evol ; 161: 107181, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33892100

RESUMO

Advances from empirical studies in phylogeography, systematics and species delimitation highlight the importance of integrative approaches for quantifying taxonomic diversity. Genomic data have greatly improved our ability to discern both systematic diversity and evolutionary history. Here we combine analyses of mitochondrial DNA sequences, thousands of genome-wide SNPs and linear and geometric morphometrics on Antaresia, a clade of four currently recognised dwarf pythons from Australia and New Guinea (Antaresia childreni, A. stimsoni, A. maculosa and A. perthensis). Our integrative analyses of phylogenetics, population structure, species delimitation, historical demography and morphometrics revealed that the true evolutionary diversity is not well reflected in the current appraisal of the diversity of the group. We find that Antaresia childreni and A. stimsoni comprise a widespread network of populations connected by gene flow and without evidence of species-level divergence among them. However, A. maculosa shows considerable genetic structuring which leads us to recognise two subspecies in northeastern Australia and a new species in Torres Strait and New Guinea. These two contrasting cases of over and under estimation of diversity, respectively, illustrate the power of thorough integrative approaches into understanding evolution of biodiversity. Furthermore, our analyses of historical demographic patterns highlight the importance of the Kimberley, Pilbara and Cape York as origins of biodiversity in Australia.


Assuntos
Boidae/classificação , Boidae/genética , Filogenia , Filogeografia , Animais , Tamanho Corporal , Boidae/anatomia & histologia , DNA Mitocondrial/genética , Fluxo Gênico/genética
14.
Mol Phylogenet Evol ; 158: 106960, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32950680

RESUMO

The large and enigmatic New Guinean pythons in the genus Leiopython are harvested from the wild to supply the international trade in pets. Six species are currently recognized (albertisii, biakensis, fredparkeri, huonensis, meridionalis, montanus) but the taxonomy of this group has been controversial. We combined analysis of 421 nuclear loci and complete mitochondrial genomes with morphological data to construct a detailed phylogeny of this group, understand their biogeographic patterns and establish the systematic diversity of this genus. Our molecular genetic data support two major clades, corresponding to L. albertisii and L. fredparkeri, but offer no support for the other four species. Our morphological data also only support two species. We therefore recognize L. albertisii and L. fredparkeri as valid species and place L. biakensis, L. meridionalis, L. huonensis and L. montanus into synonymy. We found that L. albertisii and L. fredparkeri are sympatric in western New Guinea; an atypical pattern compared to other Papuan species complexes in which the distributions of sister taxa are partitioned to the north and south of the island's central mountain range. For the purpose of conservation management, overestimation of species diversity within Leiopython has resulted in the unnecessary allocation of resources that could have been expended elsewhere. We strongly caution against revising the taxonomy of geographically widespread species groups when little or no molecular genetic data and only small morphological samples are available.


Assuntos
Boidae/classificação , Animais , Boidae/anatomia & histologia , Boidae/genética , Núcleo Celular/genética , Comércio , Conservação dos Recursos Naturais , DNA/química , DNA/metabolismo , DNA Mitocondrial/química , DNA Mitocondrial/classificação , DNA Mitocondrial/genética , Nova Guiné , Filogenia , Filogeografia , Análise de Componente Principal , Análise de Sequência de DNA
15.
J Evol Biol ; 34(3): 451-464, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33296538

RESUMO

Sexual selection shapes the adaptive landscape in complex ways that lead to trait integration. Much of our understanding of selection comes from studies of morphological traits. However, few studies attempt to quantify the form and direction of selection on performance even though it is predicted to be a more direct target of selection in nature. We measured sexual selection on performance traits (bite force, sprint speed and endurance) in an Australian lizard, the Eastern water skink (Eulamprus quoyii). We first staged 123 contests between size-matched males to investigate whether performance traits were important in determining contest outcome. In a second experiment, we established six breeding populations in large replicate semi-natural enclosures to estimate whether performance traits predicted reproductive success. Our results show that none of the performance measures were important in predicting contest outcome and were not generally strong predictors of reproductive success. However, our analyses suggest a complex fitness landscape driven by males adopting different alternative reproductive tactics (ARTs). We provide a rare test of the role performance plays in sexual selection and highlight the need to test common assumptions regarding the link between maximal performance and fitness. Our results suggest that performance traits may not necessarily be direct targets of sexual selection, but rather indirect targets through their integration with morphological and/or behavioural traits, highlighting a need for more explicit tests of the predicted links between performance and fitness.


Assuntos
Comportamento Competitivo/fisiologia , Aptidão Genética , Lagartos/fisiologia , Reprodução/genética , Seleção Sexual , Animais , Evolução Biológica , Força de Mordida , Feminino , Locomoção , Masculino , Resistência Física
16.
Syst Biol ; 69(6): 1039-1051, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32208482

RESUMO

Ecological opportunities can be provided to organisms that cross stringent biogeographic barriers towards environments with new ecological niches. Wallace's and Lyddeker's lines are arguably the most famous biogeographic barriers, separating the Asian and Australo-Papuan biotas. One of the most ecomorphologically diverse groups of reptiles, the pythons, is distributed across these lines, and are remarkably more diverse in phenotype and ecology east of Lydekker's line in Australo-Papua. We used an anchored hybrid enrichment approach, with near complete taxon sampling, to extract mitochondrial genomes and 376 nuclear loci to resolve and date their phylogenetic history. Biogeographic reconstruction demonstrates that they originated in Asia around 38-45 Ma and then invaded Australo-Papua around 23 Ma. Australo-Papuan pythons display a sizeable expansion in morphological space, with shifts towards numerous new adaptive optima in head and body shape, coupled with the evolution of new micro-habitat preferences. We provide an updated taxonomy of pythons and our study also demonstrates how ecological opportunity following colonization of novel environments can promote morphological diversification in a formerly ecomorphologically conservative group. [Adaptive radiation; anchored hybrid enrichment; biogeography; morphometrics; snakes.].


Assuntos
Evolução Biológica , Boidae/classificação , Ecossistema , Filogenia , Filogeografia , Animais , Ásia , Biodiversidade , Boidae/anatomia & histologia , Boidae/genética , Fenótipo
17.
Syst Biol ; 69(3): 502-520, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31550008

RESUMO

Genomics is narrowing uncertainty in the phylogenetic structure for many amniote groups. For one of the most diverse and species-rich groups, the squamate reptiles (lizards, snakes, and amphisbaenians), an inverse correlation between the number of taxa and loci sampled still persists across all publications using DNA sequence data and reaching a consensus on the relationships among them has been highly problematic. In this study, we use high-throughput sequence data from 289 samples covering 75 families of squamates to address phylogenetic affinities, estimate divergence times, and characterize residual topological uncertainty in the presence of genome-scale data. Importantly, we address genomic support for the traditional taxonomic groupings Scleroglossa and Macrostomata using novel machine-learning techniques. We interrogate genes using various metrics inherent to these loci, including parsimony-informative sites (PIS), phylogenetic informativeness, length, gaps, number of substitutions, and site concordance to understand why certain loci fail to find previously well-supported molecular clades and how they fail to support species-tree estimates. We show that both incomplete lineage sorting and poor gene-tree estimation (due to a few undesirable gene properties, such as an insufficient number of PIS), may account for most gene and species-tree discordance. We find overwhelming signal for Toxicofera, and also show that none of the loci included in this study supports Scleroglossa or Macrostomata. We comment on the origins and diversification of Squamata throughout the Mesozoic and underscore remaining uncertainties that persist in both deeper parts of the tree (e.g., relationships between Dibamia, Gekkota, and remaining squamates; among the three toxicoferan clades Iguania, Serpentes, and Anguiformes) and within specific clades (e.g., affinities among gekkotan, pleurodont iguanians, and colubroid families).


Assuntos
Genoma/genética , Filogenia , Répteis/classificação , Répteis/genética , Animais , Classificação , Sequenciamento de Nucleotídeos em Larga Escala , Répteis/anatomia & histologia
18.
Mol Phylogenet Evol ; 142: 106640, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31605811

RESUMO

Molecular data sets and the increasing use of integrative systematics is revealing cryptic diversity in a range of taxa - particularly in remote and poorly sampled landscapes like the island of New Guinea. Green pythons (Morelia viridis complex) are one of the most conspicuous elements of this island's fauna, with large numbers taken from the wild to supply international demand for exotic pets. We test hypotheses about species boundaries in green pythons from across New Guinea and Australia with mitochondrial genomes, 389 nuclear exons, and comprehensive assessment of morphological variation. Strong genetic structuring of green python populations and species delimitation methods confirm the presence of two species, broadly occurring north and south of New Guinea's central mountains. Our data also support three subspecies within the northern species. Subtle but consistent morphological divergence among the putative taxa is concordant with patterns of molecular divergence. Our extensive sampling identifies several zones of hitherto unknown biogeographical significance on the island of New Guinea. We revise the taxonomy of the group, discuss the relevance of our findings in the context of Papuan biogeography and the implications of our systematic changes for the conservation management of these taxa.


Assuntos
Boidae/classificação , Animais , Austrália , Boidae/genética , Núcleo Celular/genética , Genoma Mitocondrial , Melanesia , Nova Guiné , Filogenia , Filogeografia
19.
Mol Phylogenet Evol ; 139: 106524, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31170522

RESUMO

Organisms rapidly diversifying across unstable environments such as mountain tops provide substantial challenges for resolving evolutionary histories and delimiting species. The Liolaemus leopardinus clade is a group of five species of lizards adapted to high altitudes in central Chile, with most species found in the Andes, but one species, L. frassinettii is found in the independent Costa Cordillera. Despite their allopatric distributions, they display shallow mitochondrial divergences, making phylogenetics and species delimitation of this clade hard to resolve. We use an integrative approach to delimit species by considering morphological data (linear and landmark-based), mitochondrial DNA (mtDNA), and nuclear DNA (Sequences and SNPs collected with ddRADseq). We find strong conflicting signals between phylogenetic analyses of the nuclear and mtDNA data. While mtDNA places L. frassinettii as sister to the rest of the clade, the SNPs support a south to north order of divergences, with southernmost species (new taxon described here) as sister to the rest of the clade. Moreover, species delimitation using mtDNA only supports two species (one in the Costa and one in the Andes), whereas combined analyses using the nuclear data and morphology support multiple Andean taxa, including a new one we describe here. Based on these results, population structure analyses and our knowledge of the geological and climatic history of the Andes, we argue that this mito-nuclear discordance is explained by past introgression among the Andean taxa, likely during glacial periods that forced these lizards to lower altitudes where they would hybridize. The complete isolation between the Costa and Andes cordilleras has prevented any further contact between taxa on either mountain chain. Our study highlights the importance of using multiple lines of evidence to resolve evolutionary histories, and the potential misleading results from relying solely on mtDNA.


Assuntos
Especiação Genética , Lagartos/classificação , Lagartos/genética , Filogenia , Altitude , Animais , Chile , DNA Mitocondrial/genética , Genoma/genética , Hibridização Genética , Polimorfismo de Nucleotídeo Único/genética
20.
J Chem Phys ; 151(19): 194301, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31757148

RESUMO

The millimeter/submillimeter spectrum of the CrBr radical has been recorded in the frequency range of 220-300 GHz using direct absorption techniques, utilizing a new instrumental design. This study is the first spectroscopic investigation of this radical species by any method. CrBr was synthesized in a DC discharge by the reaction of chromium vapor, produced in a Broida-type oven, with Br2CH2 in argon. Six to nine rotational transitions were measured for four isotopologues of this molecule in their natural abundances, 52Cr79Br, 52Cr81Br, 53Cr79Br, and 53Cr81Br. Each transition was found to consist of six distinct fine structure components, indicating a 6Σ+ ground electronic state, as observed for CrF and CrCl. Lines originating in the v = 1 and 2 vibrational states were recorded for 52Cr79Br and 52Cr81Br as well. The spectra were analyzed using a Hund's case (b) Hamiltonian, and rotational, spin-spin, and spin-rotation parameters were determined. The third-order spin-rotation constant γs and the fourth order spin-spin term θ were necessary for the analysis; these parameters are thought to play a role in states with high multiplicities. Equilibrium parameters were also derived for the CrBr; a bond length of re = 2.337 282 (30) Å and a vibrational constant of ωe ≅ 300 cm-1 were determined. The sign and magnitude of the spin-spin and spin-rotation constants suggest the presence of nearby 4Π and 6Π excited states in CrBr, lying ∼9000 cm-1 above the ground state. The new instrument design, employing more compact, free-space optics utilizing an offset ellipsoidal mirror, facilitated these measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA