Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Transl Med ; 21(1): 566, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620858

RESUMO

BACKGROUND: Long-chain acyl-carnitines (ACs) are potential arrhythmogenic metabolites. Their role in atrial fibrillation (AF) remains incompletely understood. Using a systems medicine approach, we assessed the contribution of C18:1AC to AF by analysing its in vitro effects on cardiac electrophysiology and metabolism, and translated our findings into the human setting. METHODS AND RESULTS: Human iPSC-derived engineered heart tissue was exposed to C18:1AC. A biphasic effect on contractile force was observed: short exposure enhanced contractile force, but elicited spontaneous contractions and impaired Ca2+ handling. Continuous exposure provoked an impairment of contractile force. In human atrial mitochondria from AF individuals, C18:1AC inhibited respiration. In a population-based cohort as well as a cohort of patients, high C18:1AC serum concentrations were associated with the incidence and prevalence of AF. CONCLUSION: Our data provide evidence for an arrhythmogenic potential of the metabolite C18:1AC. The metabolite interferes with mitochondrial metabolism, thereby contributing to contractile dysfunction and shows predictive potential as novel circulating biomarker for risk of AF.


Assuntos
Fibrilação Atrial , Humanos , Átrios do Coração , Mitocôndrias , Contração Muscular , Respiração
2.
Glob Chang Biol ; 28(2): 493-508, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34644449

RESUMO

The effect of nutrient availability on plant growth and the terrestrial carbon sink under climate change and elevated CO2 remains one of the main uncertainties of the terrestrial carbon cycle. This is partially due to the difficulty of assessing nutrient limitation at large scales over long periods of time. Consistent declines in leaf nitrogen (N) content and leaf δ15 N have been used to suggest that nitrogen limitation has increased in recent decades, most likely due to the concurrent increase in atmospheric CO2 . However, such data sets are often not straightforward to interpret due to the complex factors that contribute to the spatial and temporal variation in leaf N and isotope concentration. We use the land surface model (LSM) QUINCY, which has the unique capacity to represent N isotopic processes, in conjunction with two large data sets of foliar N and N isotope content. We run the model with different scenarios to test whether foliar δ15 N isotopic data can be used to infer large-scale N limitation and if the observed trends are caused by increasing atmospheric CO2 , changes in climate or changes in sources and magnitude of anthropogenic N deposition. We show that while the model can capture the observed change in leaf N content and predict widespread increases in N limitation, it does not capture the pronounced, but very spatially heterogeneous, decrease in foliar δ15 N observed in the data across the globe. The addition of an observation-based temporal trend in isotopic composition of N deposition leads to a more pronounced decrease in simulated leaf δ15 N. Our results show that leaf δ15 N observations cannot, on their own, be used to assess global-scale N limitation and that using such a data set in conjunction with an LSM can reveal the drivers behind the observed patterns.


Assuntos
Ecossistema , Nitrogênio , Ciclo do Carbono , Sequestro de Carbono , Mudança Climática , Folhas de Planta
3.
Nature ; 520(7549): 706-9, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25642962

RESUMO

The six-electron reduction of sulfite to sulfide is the pivot point of the biogeochemical cycle of the element sulfur. The octahaem cytochrome c MccA (also known as SirA) catalyses this reaction for dissimilatory sulfite utilization by various bacteria. It is distinct from known sulfite reductases because it has a substantially higher catalytic activity and a relatively low reactivity towards nitrite. The mechanistic reasons for the increased efficiency of MccA remain to be elucidated. Here we show that anoxically purified MccA exhibited a 2- to 5.5-fold higher specific sulfite reductase activity than the enzyme isolated under oxic conditions. We determined the three-dimensional structure of MccA to 2.2 Å resolution by single-wavelength anomalous dispersion. We find a homotrimer with an unprecedented fold and haem arrangement, as well as a haem bound to a CX15CH motif. The heterobimetallic active-site haem 2 has a Cu(I) ion juxtaposed to a haem c at a Fe-Cu distance of 4.4 Å. While the combination of metals is reminiscent of respiratory haem-copper oxidases, the oxidation-labile Cu(I) centre of MccA did not seem to undergo a redox transition during catalysis. Intact MccA tightly bound SO2 at haem 2, a dehydration product of the substrate sulfite that was partially turned over due to photoreduction by X-ray irradiation, yielding the reaction intermediate SO. Our data show the biometal copper in a new context and function and provide a chemical rationale for the comparatively high catalytic activity of MccA.


Assuntos
Proteínas de Bactérias/química , Cobre/metabolismo , Heme/análogos & derivados , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Wolinella/enzimologia , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Cisteína/análogos & derivados , Cisteína/metabolismo , Heme/metabolismo , Modelos Moleculares , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/isolamento & purificação , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Sulfitos/metabolismo , Dióxido de Enxofre/metabolismo
4.
Mol Microbiol ; 104(3): 449-462, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28164386

RESUMO

The membranous quinone/quinol pool is essential to the majority of life forms and has been widely used as an important biomarker in microbial taxonomy. In the anaerobic world, the most important quinones are menaquinone (MK) and a methylated form of MK, designated methylmenaquinone (MMK), which is anticipated to serve specifically in low-potential electron transport chains involved in anaerobic respiration. However, it has remained unclear how MMK is generated. Here, we show that a novel enzyme homologous to class C radical SAM methyltransferases (RSMTs) synthesizes MMK using MK as substrate. Such enzymes, termed either MenK or MqnK, are present in MMK-producing bacteria (and some archaea) that possess either the classical MK biosynthesis pathway (Men) or the futalosine pathway (Mqn). An mqnK deletion mutant of the model Epsilonproteobacterium Wolinella succinogenes was unable to produce MMK6 but its formation was restored upon genomic complementation using either the native mqnK gene or menK from the human gut bacterium Adlercreutzia equolifaciens or Shewanella oneidensis. Moreover, any of the menK genes enabled Escherichia coli cells to produce MMK8 and a methylated form of 2-demethylmenaquinone8 (DMK8 ). The results expand the knowledge on quinone synthesis and demonstrate an unprecedented function for a class C RSMT-type enzyme in primary cell metabolism.


Assuntos
Metiltransferases/metabolismo , S-Adenosilmetionina/metabolismo , Vitamina K 2/metabolismo , Wolinella/metabolismo , Proteínas de Bactérias/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Humanos , Oxirredução , Wolinella/enzimologia
5.
Environ Microbiol ; 18(9): 2899-912, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26395430

RESUMO

Sensing potential nitrogen-containing respiratory substrates such as nitrate, nitrite, hydroxylamine, nitric oxide (NO) or nitrous oxide (N2 O) in the environment and subsequent upregulation of corresponding catabolic enzymes is essential for many microbial cells. The molecular mechanisms of such adaptive responses are, however, highly diverse in different species. Here, induction of periplasmic nitrate reductase (Nap), cytochrome c nitrite reductase (Nrf) and cytochrome c N2 O reductase (cNos) was investigated in cells of the Epsilonproteobacterium Wolinella succinogenes grown either by fumarate, nitrate or N2 O respiration. Furthermore, fumarate respiration in the presence of various nitrogen compounds or NO-releasing chemicals was examined. Upregulation of each of the Nap, Nrf and cNos enzyme systems was found in response to the presence of nitrate, NO-releasers or N2 O, and the cells were shown to employ three transcription regulators of the Crp-Fnr superfamily (homologues of Campylobacter jejuni NssR), designated NssA, NssB and NssC, to mediate the upregulation of Nap, Nrf and cNos. Analysis of single nss mutants revealed that NssA controls production of the Nap and Nrf systems in fumarate-grown cells, while NssB was required to induce the Nap, Nrf and cNos systems specifically in response to NO-generators. NssC was indispensable for cNos production under any tested condition. The data indicate dedicated signal transduction routes responsive to nitrate, NO and N2 O and imply the presence of an N2 O-sensing mechanism.


Assuntos
Nitrato Redutase/genética , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Óxido Nitroso/metabolismo , Fatores de Transcrição/metabolismo , Wolinella/genética , Adaptação Fisiológica , Citocromos a1/biossíntese , Citocromos a1/genética , Citocromos c1/biossíntese , Citocromos c1/genética , Regulação Bacteriana da Expressão Gênica , Nitrato Redutase/biossíntese , Nitrato Redutase/metabolismo , Nitrato Redutases/biossíntese , Nitrato Redutases/genética , Fatores de Transcrição/genética , Regulação para Cima , Wolinella/enzimologia , Wolinella/metabolismo
6.
J Am Chem Soc ; 137(8): 3059-68, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25658043

RESUMO

Cytochrome c nitrite reductases perform a key step in the biogeochemical N-cycle by catalyzing the six-electron reduction of nitrite to ammonium. These multiheme cytochromes contain a number of His/His ligated c-hemes for electron transfer and a structurally differentiated heme that provides the catalytic center. The catalytic heme has proximal ligation from lysine, or histidine, and an exchangeable distal ligand bound within a pocket that includes a conserved histidine. Here we describe properties of a penta-heme cytochrome c nitrite reductase in which the distal His has been substituted by Asn. The variant is unable to catalyze nitrite reduction despite retaining the ability to reduce a proposed intermediate in that process, namely, hydroxylamine. A combination of electrochemical, structural and spectroscopic studies reveals that the variant enzyme simultaneously binds nitrite and electrons at the catalytic heme. As a consequence the distal His is proposed to play a key role in orienting the nitrite for N-O bond cleavage. The electrochemical experiments also reveal that the distal His facilitates rapid nitrite binding to the catalytic heme of the native enzyme. Finally it is noted that the thermodynamic descriptions of nitrite- and electron-binding to the active site of the variant enzyme are modulated by the prevailing oxidation states of the His/His ligated hemes. This behavior is likely to be displayed by other multicentered redox enzymes such that there are wide implications for considering the determinants of catalytic activity in this important and varied group of oxidoreductases.


Assuntos
Citocromos a1/química , Citocromos a1/metabolismo , Citocromos c1/química , Citocromos c1/metabolismo , Histidina , Nitrato Redutases/química , Nitrato Redutases/metabolismo , Biocatálise , Domínio Catalítico , Escherichia coli/enzimologia , Modelos Moleculares , Nitritos/metabolismo , Oxirredução , Prótons , Wolinella/enzimologia
7.
Microbiology (Reading) ; 160(Pt 8): 1749-1759, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24781903

RESUMO

Global warming is moving more and more into the public consciousness. Besides the commonly mentioned carbon dioxide and methane, nitrous oxide (N2O) is a powerful greenhouse gas in addition to its contribution to depletion of stratospheric ozone. The increasing concern about N2O emission has focused interest on underlying microbial energy-converting processes and organisms harbouring N2O reductase (NosZ), such as denitrifiers and ammonifiers of nitrate and nitrite. Here, the epsilonproteobacterial model organism Wolinella succinogenes is investigated with regard to its capacity to produce and consume N2O during growth by anaerobic nitrate ammonification. This organism synthesizes an unconventional cytochrome c nitrous oxide reductase (cNosZ), which is encoded by the first gene of an atypical nos gene cluster. However, W. succinogenes lacks a nitric oxide (NO)-producing nitrite reductase of the NirS- or NirK-type as well as an NO reductase of the Nor-type. Using a robotized incubation system, the wild-type strain and suitable mutants of W. succinogenes that either produced or lacked cNosZ were analysed as to their production of NO, N2O and N2 in both nitrate-sufficient and nitrate-limited growth medium using formate as electron donor. It was found that cells growing in nitrate-sufficient medium produced small amounts of N2O, which derived from nitrite and, most likely, from the presence of NO. Furthermore, cells employing cNosZ were able to reduce N2O to N2. This reaction, which was fully inhibited by acetylene, was also observed after adding N2O to the culture headspace. The results indicate that W. succinogenes cells are competent in N2O and N2 production despite being correctly grouped as respiratory nitrate ammonifiers. N2O production is assumed to result from NO detoxification and nitrosative stress defence, while N2O serves as a terminal electron acceptor in anaerobic respiration. The ecological implications of these findings are discussed.


Assuntos
Compostos de Amônio/metabolismo , Nitratos/metabolismo , Óxido Nitroso/metabolismo , Wolinella/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Wolinella/efeitos dos fármacos , Wolinella/enzimologia , Wolinella/genética
8.
Mol Microbiol ; 82(6): 1515-30, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22040142

RESUMO

Assimilatory and dissimilatory sulphite reductions are key reactions in the biogeochemical sulphur cycle and several distinct sirohaem-containing sulphite reductases have been characterized. Here, we describe that the Epsilonproteobacterium Wolinella succinogenes is able to grow by sulphite respiration (yielding sulphide) with formate as electron donor. Sulphite is reduced by MccA, a prototypical member of an emerging new class of periplasmic cytochrome c sulphite reductases that, phylogenetically, belongs to a multihaem cytochrome c superfamily whose members play crucial roles in the global sulphur and nitrogen cycles. Within this family, MccA represents an unconventional octahaem cytochrome c containing a special haem c group that is bound via two cysteine residues arranged in a unique CX(15)CH haem c binding motif. The phenotypes of numerous W.succinogenes mutants producing MccA variants underlined the structural importance of this motif. Several open reading frames of the mcc gene cluster were individually inactivated and characterization of the corresponding mutants indicated that the predicted iron-sulphur protein MccC, the putative quinol dehydrogenase MccD (a member of the NrfD/PsrC family) as well as a peptidyl-prolyl cis-trans isomerase, MccB, are essential for sulphite respiration. MccA synthesis in W. succinogenes was found to be induced by sulphite (but not by thiosulphate or sulphide) and repressed in the presence of fumarate or nitrate. Based on the results, a sophisticated model of respiratory sulphite reduction by the Mcc system is presented.


Assuntos
Proteínas de Bactérias/genética , Proteínas Ferro-Enxofre/genética , Família Multigênica , Sulfito Desidrogenase/genética , Sulfitos/metabolismo , Wolinella/genética , Wolinella/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Dados de Sequência Molecular , Oxirredução , Sulfito Desidrogenase/metabolismo
9.
Mol Microbiol ; 75(1): 122-37, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19919672

RESUMO

Bacterial c-type cytochrome maturation is dependent on a complex enzymic machinery. The key reaction is catalysed by cytochrome c haem lyase (CCHL) that usually forms two thioether bonds to attach haem b to the cysteine residues of a haem c binding motif (HBM) which is, in most cases, a CX(2)CH sequence. Here, the HBM specificity of three distinct CCHL isoenzymes (NrfI, CcsA1 and CcsA2) from the Epsilonproteobacterium Wolinella succinogenes was investigated using either W. succinogenes or Escherichia coli as host organism. Several reporter c-type cytochromes were employed including cytochrome c nitrite reductases (NrfA) from E. coli and Campylobacter jejuni that differ in their active-site HBMs (CX(2)CK or CX(2)CH). W. succinogenes CcsA2 was found to attach haem to standard CX(2)CH motifs in various cytochromes whereas other HBMs were not recognized. NrfI was able to attach haem c to the active-site CX(2)CK motif of both W. succinogenes and E. coli NrfA, but not to NrfA from C. jejuni. Different apo-cytochrome variants carrying the CX(15)CH motif, assumed to be recognized by CcsA1 during maturation of the octahaem cytochrome MccA, were not processed by CcsA1 in either W. succinogenes or E. coli. It is concluded that the dedicated CCHLs NrfI and CcsA1 attach haem to non-standard HBMs only in the presence of further, as yet uncharacterized structural features. Interestingly, it proved impossible to delete the ccsA2 gene from the W. succinogenes genome, a finding that is discussed in the light of the available genomic, proteomic and functional data on W. succinogenes c-type cytochromes.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Heme/metabolismo , Liases/genética , Liases/metabolismo , Wolinella/enzimologia , Motivos de Aminoácidos , Sítios de Ligação , Campylobacter jejuni/enzimologia , Campylobacter jejuni/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Isoenzimas/isolamento & purificação , Isoenzimas/metabolismo , Especificidade por Substrato
10.
Environ Microbiol ; 13(9): 2478-94, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21672122

RESUMO

Microorganisms employ diverse mechanisms to withstand physiological stress conditions exerted by reactive or toxic oxygen and nitrogen species such as hydrogen peroxide, organic hydroperoxides, superoxide anions, nitrite, hydroxylamine, nitric oxide or NO-generating compounds. This study identified components of the oxidative and nitrosative stress defence network of Wolinella succinogenes, an exceptional Epsilonproteobacterium that lacks both catalase and haemoglobins. Various gene deletion-insertion mutants were constructed, grown by either fumarate respiration or respiratory nitrate ammonification and subjected to disc diffusion, growth and viability assays under stress conditions. It was demonstrated that mainly two periplasmic multihaem c-type cytochromes, namely cytochrome c peroxidase and cytochrome c nitrite reductase (NrfA), mediated resistance to hydrogen peroxide. Two AhpC-type peroxiredoxin isoenzymes were shown to be involved in protection against different organic hydroperoxides. The phenotypes of two superoxide dismutase mutants lacking either SodB or SodB2 implied that both isoenzymes play important roles in oxygen and superoxide stress defence although they are predicted to reside in the cytoplasm and periplasm respectively. NrfA and a cytoplasmic flavodiiron protein (Fdp) were identified as key components of nitric oxide detoxification. In addition, NrfA (but not the hybrid cluster protein Hcp) was found to mediate resistance to hydroxylamine stress. The results indicate the presence of a robust oxidative and nitrosative stress defence network and identify NrfA as a multifunctional cytochrome c involved in both anaerobic respiration and stress protection.


Assuntos
Citocromos a1/metabolismo , Citocromos c1/metabolismo , Peróxido de Hidrogênio/metabolismo , Hidroxilamina/metabolismo , Nitrato Redutases/metabolismo , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Wolinella/enzimologia , Citocromos a1/genética , Citocromos c/metabolismo , Citocromos c1/genética , Citoplasma/enzimologia , Mutação INDEL , Isoenzimas/metabolismo , Nitrato Redutases/genética , Nitratos/metabolismo , Doadores de Óxido Nítrico/metabolismo , Oxirredução , Estresse Oxidativo , Periplasma/enzimologia , Wolinella/genética
11.
Biochem Soc Trans ; 39(1): 299-302, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21265792

RESUMO

ϵ-Proteobacteria form a globally ubiquitous group of ecologically significant organisms and comprise a diverse range of host-associated and free-living species. To grow by anaerobic respiration, many ϵ-proteobacteria reduce nitrate to nitrite followed by either nitrite ammonification or denitrification. Using the ammonifying model organisms Wolinella succinogenes and Campylobacter jejuni, the electron transport chains of nitrate respiration, respiratory nitrite ammonification and even N2O (nitrous oxide) respiration have been characterized in recent years, but knowledge on nitrosative stress defence, nitrogen compound-sensing and corresponding signal transduction pathways is limited. The potentially dominant role of NssR (nitrosative stress-sensing regulator)-type transcription regulators in ϵ-proteobacterial nitrogen metabolism is discussed.


Assuntos
Proteínas de Bactérias/metabolismo , Respiração Celular/fisiologia , Epsilonproteobacteria/metabolismo , Nitrogênio/metabolismo , Animais , Proteínas de Bactérias/genética , Sequência de Bases , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Transporte de Elétrons , Epsilonproteobacteria/genética , Humanos , Dados de Sequência Molecular , Nitratos/metabolismo , Transcrição Gênica , Wolinella/genética , Wolinella/metabolismo
12.
Biochem Soc Trans ; 39(6): 1864-70, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22103541

RESUMO

Bacterial MCCs (multihaem cytochromes c) represent widespread respiratory electron-transfer proteins. In addition, some of them convert substrates such as nitrite, hydroxylamine, nitric oxide, hydrazine, sulfite, thiosulfate or hydrogen peroxide. In many cases, only a single function is assigned to a specific MCC in database entries despite the fact that an MCC may accept various substrates, thus making it a multifunctional catalyst that can play diverse physiological roles in bacterial respiration, detoxification and stress defence mechanisms. The present article briefly reviews the structure, function and biogenesis of selected MCCs that catalyse key reactions in the biogeochemical nitrogen and sulfur cycles.


Assuntos
Bactérias/metabolismo , Biocatálise , Citocromos c/metabolismo , Heme/metabolismo , Nitrogênio/metabolismo , Enxofre/metabolismo , Ciclo do Nitrogênio
13.
Biochim Biophys Acta ; 1787(6): 646-56, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19171117

RESUMO

Recent phylogenetic analyses have established that the Epsilonproteobacteria form a globally ubiquitous group of ecologically significant organisms that comprises a diverse range of free-living bacteria as well as host-associated organisms like Wolinella succinogenes and pathogenic Campylobacter and Helicobacter species. Many Epsilonproteobacteria reduce nitrate and nitrite and perform either respiratory nitrate ammonification or denitrification. The inventory of epsilonproteobacterial genomes from 21 different species was analysed with respect to key enzymes involved in respiratory nitrogen metabolism. Most ammonifying Epsilonproteobacteria employ two enzymic electron transport systems named Nap (periplasmic nitrate reductase) and Nrf (periplasmic cytochrome c nitrite reductase). The current knowledge on the architecture and function of the corresponding proton motive force-generating respiratory chains using low-potential electron donors are reviewed in this article and the role of membrane-bound quinone/quinol-reactive proteins (NapH and NrfH) that are representative of widespread bacterial electron transport modules is highlighted. Notably, all Epsilonproteobacteria lack a napC gene in their nap gene clusters. Possible roles of the Nap and Nrf systems in anabolism and nitrosative stress defence are also discussed. Free-living denitrifying Epsilonproteobacteria lack the Nrf system but encode cytochrome cd(1) nitrite reductase, at least one nitric oxide reductase and a characteristic cytochrome c nitrous oxide reductase system (cNosZ). Interestingly, cNosZ is also found in some ammonifying Epsilonproteobacteria and enables nitrous oxide respiration in W. succinogenes.


Assuntos
Epsilonproteobacteria/metabolismo , Nitrogênio/metabolismo , Wolinella/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Citocromos a1/genética , Citocromos a1/metabolismo , Citocromos c1/genética , Citocromos c1/metabolismo , Transporte de Elétrons , Metabolismo Energético , Epsilonproteobacteria/genética , Genes Bacterianos , Modelos Biológicos , Família Multigênica , Nitrato Redutase/genética , Nitrato Redutase/metabolismo , Nitrato Redutases/genética , Nitrato Redutases/metabolismo , Óxido Nitroso/metabolismo , Oxirredução , Periplasma/enzimologia , Compostos de Amônio Quaternário/metabolismo , Wolinella/genética
14.
Microbiology (Reading) ; 156(Pt 12): 3773-3781, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20705660

RESUMO

Bacterial cytochrome c maturation occurs at the outside of the cytoplasmic membrane, requires transport of haem b across the membrane, and depends on membrane-bound cytochrome c haem lyase (CCHL), an enzyme that catalyses covalent attachment of haem b to apocytochrome c. Epsilonproteobacteria such as Wolinella succinogenes use the cytochrome c biogenesis system II and contain unusually large CCHL proteins of about 900 amino acid residues that appear to be fusions of the CcsB and CcsA proteins found in other bacteria. CcsBA-type CCHLs have been proposed to act as haem transporters that contain two haem b coordination sites located at different sides of the membrane and formed by histidine pairs. W. succinogenes cells contain three CcsBA-type CCHL isoenzymes (NrfI, CcsA1 and CcsA2) that are known to differ in their specificity for apocytochromes and apparently recognize different haem c binding motifs such as CX(2)CH (by CcsA2), CX(2)CK (by NrfI) and CX(15)CH (by CcsA1). In this study, conserved histidine residues were individually replaced by alanine in each of the W. succinogenes CCHLs. Characterization of NrfI and CcsA1 variants in W. succinogenes demonstrated that a set of four histidines is essential for maturing the dedicated multihaem cytochromes c NrfA and MccA, respectively. The function of W. succinogenes CcsA2 variants produced in Escherichia coli was also found to depend on each of these four conserved histidine residues. The presence of imidazole in the growth medium of both W. succinogenes and E. coli rescued the cytochrome c biogenesis activity of most histidine variants, albeit to different extents, thereby implying the presence of two functionally distinct histidine pairs in each CCHL. The data support a model in which two conserved haem b binding sites are involved in haem transport catalysed by CcsBA-type CCHLs.


Assuntos
Proteínas de Bactérias/química , Heme/metabolismo , Histidina/metabolismo , Liases/química , Wolinella/enzimologia , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Sequência Conservada , Histidina/química , Histidina/genética , Liases/genética , Liases/metabolismo , Wolinella/química , Wolinella/genética
15.
Mol Microbiol ; 69(5): 1137-52, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18631238

RESUMO

Nitrate respiration catalysed by the epsilon-proteobacterium Wolinella succinogenes relies on the NapAGHBFLD system that comprises periplasmic nitrate reductase (NapA) and various other Nap proteins required for electron transport from menaquinol to NapA or maturation of Nap components. The W. succinogenes Nap system is unusual as electron transfer to NapA was shown previously to depend on both subunits of the predicted menaquinol dehydrogenase complex NapGH but did not require a cytochrome c of the NapC/NrfH family. Nonetheless, minor residual growth by nitrate respiration was observed in napG and napH gene inactivation mutants. Here, the question is addressed whether alternative membrane-bound menaquinol dehydrogenases, like NrfH and NosGH, involved in nitrite or N2O reduction systems, are able to functionally replace NapGH. The phenotypes of various gene deletion mutants as well as strains expressing chimeric nap/nos operons demonstrate that NosH is able to donate electrons to the respiratory chain of nitrate respiration at a physiologically relevant rate, whereas NrfH and NosG are not. The iron-sulphur protein NapG was shown to form a complex with NapH in the membrane but was detected in the periplasmic cell fraction in the absence of NapH. Likewise, NosH is able to bind NapG. Each of the eight poly-cysteine motifs present in either NapG or NapH was shown to be essential for nitrate respiration. The NapG homologue NosG could not substitute for NapG, even after adjusting the cysteine spacing to that of NapG, implying that NapG and NosG are specific adapter proteins that channel electrons into either the Nap or Nos system. The current model on the structure and function of the NapGH menaquinol dehydrogenase complex is presented and the composition of the electron transport chains that deliver electrons to periplasmic reductases for either nitrate, nitrite or N2O is discussed.


Assuntos
Proteínas de Bactérias/metabolismo , Nitrato Redutase/metabolismo , Nitratos/metabolismo , Wolinella/enzimologia , Motivos de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Membrana Celular/química , Membrana Celular/enzimologia , Membrana Celular/genética , Membrana Celular/metabolismo , Transporte de Elétrons , Expressão Gênica , Genoma Bacteriano , Nitrato Redutase/química , Nitrato Redutase/genética , Óperon , Wolinella/química , Wolinella/genética , Wolinella/metabolismo
16.
Biochem J ; 414(1): 73-9, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18439144

RESUMO

Members of the NapC/NrfH family are multihaem c-type cytochromes that exchange electrons with oxidoreductases situated at the outside of the cytoplasmic membrane or in the periplasmic space of many proteobacteria. They form a group of membrane-bound quinol dehydrogenases that are essential components of several electron transport chains, for example those of periplasmic nitrate respiration and respiratory nitrite ammonification. Knowledge of the structure-function relationships of NapC/NrfH proteins is scarce and only one high-resolution structure (Desulfovibrio vulgaris NrfH) is available. In the present study, several Wolinella succinogenes mutants that produce variants of NrfH, the membrane anchor of the cytochrome c nitrite reductase complex, were constructed and characterized in order to improve the understanding of the putative menaquinol-binding site, the maturation and function of the four covalently bound haem c groups and the importance of the N-terminal transmembrane segment. Based on amino acid sequence alignments, a homology model for W. succinogenes NrfH was constructed that underlines the overall conservation of tertiary structure in spite of a low sequence homology. The results support the proposed architecture of the menaquinol-binding site in D. vulgaris NrfH, demonstrate that each histidine residue arranged in one of the four CX(2)CH haem c-binding motifs is essential for NrfH maturation in W. succinogenes, and indicate a limited flexibility towards the length and structure of the transmembrane region.


Assuntos
Citocromos c/genética , Variação Genética/genética , Heme/análogos & derivados , Proteínas de Membrana/genética , Oxirredutases/genética , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Células Cultivadas , Citocromos c/química , Citocromos c/metabolismo , Desulfovibrio vulgaris/enzimologia , Desulfovibrio vulgaris/genética , Heme/química , Heme/genética , Heme/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Naftóis/química , Naftóis/metabolismo , Nitrato Redutases/química , Nitrato Redutases/genética , Nitrato Redutases/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Homologia de Sequência de Aminoácidos , Terpenos/química , Terpenos/metabolismo , Wolinella/enzimologia
17.
Mol Nutr Food Res ; 51(2): 192-200, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17230588

RESUMO

Oligomeric procyanidins were found to inhibit the protein tyrosine kinase activity of the epidermal growth factor receptor (EGFR). The inhibitory potency was found to increase with the degree of oligomerisation (PA2 > PC1 >> PB1 = PB2 = PB3 = PB4 >> (-)-epicatechin). To address the question whether the interference with the activity of isolated EGFR preparations also plays a role within intact cells, effects on the phosphorylation status of the EGFR, as a measure of its activity, were determined in human colon carcinoma cells. Treatment of HT29 cells with the trimeric procyanidin PC1 resulted in a decrease of the EGFR autophosphorylation already at low micromolar concentrations. A respective procyanidin tetramer (PA2) failed to affect substantially the receptor phosphorylation status by up to 50 microM, indicating that the effectiveness of oligomeric procyanidins against EGFR activity within intact cells might be limited with increasing degree of polymerisation. Nevertheless, oligomeric procyanidins were identified as potential inhibitors of the EGFR, which might be of interest with respect to chemoprevention. However, PC1 and PA2 were also identified as potent inhibitors of the catalytic activity of human topoisomerase I and II, demanding further studies to elucidate whether the interference of procyanidins with topoisomerases might impair DNA integrity, thus limiting their usefulness in terms of chemoprevention.


Assuntos
Inibidores Enzimáticos/farmacologia , Receptores ErbB/antagonistas & inibidores , Proantocianidinas/farmacologia , Inibidores da Topoisomerase , Linhagem Celular Tumoral , Dano ao DNA , Feminino , Humanos , Fosforilação , Inibidores de Proteínas Quinases/farmacologia
18.
Mol Nutr Food Res ; 51(5): 594-601, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17427262

RESUMO

Previously, we showed that an apple juice extract (AE) potently inhibits the protein tyrosine kinase (PTK) activity of the epidermal growth factor receptor (EGFR). In the present study, an apple pomace extract (APE) was found to exceed the EGFR inhibitory properties of AE in a cell-free system. The impact of the extracts on the phosphorylation status of the EGFR in intact cells (HT29) was sensitive to catalase, added to suppress the accumulation of hydrogen peroxide. In the absence of catalase, the formation of hydrogen peroxide was observed, achieving 1.1 +/- 0.1 microM (AE) and 1.5 +/- 0.1 microM (APE) after 45 min of incubation. In the presence of catalase, suppressing the hydrogen peroxide level to the solvent control, APE effectively suppressed EGFR phosphorylation, even exceeding the effects of AE. Both extracts inhibited the growth of HT29 cells, albeit the enhanced EGFR inhibitory properties of APE compared to AE were not reflected by a higher growth inhibitory potential. The results clearly show that the effect of apple extracts on the EGFR and cell growth are not simply artefacts of hydrogen peroxide formation. However, the formation of hydrogen peroxide has to be considered to modulate and/or mask cellular responses to apple extracts.


Assuntos
Receptores ErbB/metabolismo , Flavonoides/farmacologia , Frutas/química , Malus/química , Fenóis/farmacologia , Divisão Celular/efeitos dos fármacos , Células HT29 , Humanos , Peróxido de Hidrogênio/metabolismo , Fosforilação/efeitos dos fármacos , Polifenóis , Proteínas Tirosina Quinases/antagonistas & inibidores
19.
Mol Nutr Food Res ; 51(9): 1163-72, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17729219

RESUMO

In the present study we investigated the stability of anthocyanidins under cell culture conditions and addressed the question whether degradation products might contribute to the cellular effects assigned to the parent compounds. Substantial degradation was found already after 30 min, measured by HPLC/DAD. However, the decrease of detectable anthocyanidins exceeded by far the formation of the respective phenolic acids. From the formed phenolic acids only gallic acid (GA) exhibited growth inhibitory properties. However, also GA was found to be degraded rapidly. Furthermore, the incubation with delphinidin (DEL) or GA resulted in a substantial formation of hydrogen peroxide. The suppression of hydrogen peroxide accumulation by catalase modified significantly the growth inhibitory effects of DEL and GA, indicating that hydrogen peroxide formation might generate experimental artefacts. In summary, the results show that the phenolic acids formed by the degradation of cyanidin (CY), pelargonidin (PG), peonidin (PN) and malvidin (MV) do not contribute to the growth inhibitory effect of the parent compound. The degradation of DEL generates a phenolic acid with substantial growth inhibitory properties (GA). However, taken into account the small proportion of generated GA and its lacking stability, the contribution of GA to the growth inhibitory properties of DEL might be limited.


Assuntos
Antocianinas/farmacologia , Meios de Cultura/química , Ácido Gálico/farmacologia , Inibidores do Crescimento/farmacologia , Peróxido de Hidrogênio/química , Antocianinas/análise , Antocianinas/química , Catalase/metabolismo , Divisão Celular/efeitos dos fármacos , Estabilidade de Medicamentos , Inibidores Enzimáticos/farmacologia , Ácido Gálico/química , Células HT29 , Humanos , Proteínas Tirosina Quinases/antagonistas & inibidores
20.
J Agric Food Chem ; 55(13): 4999-5006, 2007 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-17542601

RESUMO

Polyphenol-rich apple extracts have been reported to suppress human colon cancer cell growth in vitro. The protein kinase C (PKC) is among the signaling elements known to play an important role in colon carcinogenesis. In the present study, we investigated whether apple polyphenols affect PKC activity and induce apoptosis in the human colon carcinoma cell line HT29. A polyphenol-rich apple juice extract (AE02) was shown to inhibit cytosolic PKC activity in a cell-free system. In contrast, incubation of HT29 cells for 1 or 3 h with AE02 up to 2 mg/mL did not affect the cytosolic PKC activity. After prolonged incubation (24 h), cytosolic PKC activity was modulated, albeit a u-shaped curve of effectiveness was observed, with an initial inhibitory effect followed by the recurrence and even induction of enzyme activity. Concomitantly, in the cytosol, a significant decrease of the protein levels of PKCalpha, PKCbetaII, and PKCgamma together with a significant increase of a proapoptotic PKCdelta fragment was observed. However, the effects on the protein levels of these PKC isoforms in the cytosol were not associated with translocation between the different cellular compartments but might instead result from the onset of apoptosis. Indeed, the treatment with AE02 was shown to induce apoptosis by the activation of caspase-3, DNA fragmentation, and cleavage of poly(ADP ribose) polymerase. So far, identified and available constituents of the apple extract did not contribute substantially to the observed effects on PKC and apoptosis induction. In summary, apple polyphenols were found to inhibit PKC activity in a cell-free system. However, our results indicate that within intact cells PKC does not represent the primary target of apple polyphenols but appears to be affected in the course of apoptosis induction.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias do Colo/enzimologia , Flavonoides/farmacologia , Frutas/química , Malus/química , Fenóis/farmacologia , Proteína Quinase C/metabolismo , Caspase 3/metabolismo , Neoplasias do Colo/patologia , Fragmentação do DNA/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Células HT29 , Humanos , Polifenóis , Proteína Quinase C/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA