Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Immunity ; 48(6): 1195-1207.e6, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29907525

RESUMO

The local regulation of type 2 immunity relies on dialog between the epithelium and the innate and adaptive immune cells. Here we found that alarmin-induced expression of the co-stimulatory molecule OX40L on group 2 innate lymphoid cells (ILC2s) provided tissue-restricted T cell co-stimulation that was indispensable for Th2 and regulatory T (Treg) cell responses in the lung and adipose tissue. Interleukin (IL)-33 administration resulted in organ-specific surface expression of OX40L on ILC2s and the concomitant expansion of Th2 and Treg cells, which was abolished upon deletion of OX40L on ILC2s (Il7raCre/+Tnfsf4fl/fl mice). Moreover, Il7raCre/+Tnfsf4fl/fl mice failed to mount effective Th2 and Treg cell responses and corresponding adaptive type 2 pulmonary inflammation arising from Nippostrongylus brasiliensis infection or allergen exposure. Thus, the increased expression of OX40L in response to IL-33 acts as a licensing signal in the orchestration of tissue-specific adaptive type 2 immunity, without which this response fails to establish.


Assuntos
Imunidade Adaptativa/imunologia , Imunidade Inata/imunologia , Glicoproteínas de Membrana/imunologia , Linfócitos T Reguladores/imunologia , Células Th2/imunologia , Fatores de Necrose Tumoral/imunologia , Animais , Diferenciação Celular/imunologia , Interleucina-33/imunologia , Ativação Linfocitária/imunologia , Linfócitos/imunologia , Camundongos , Ligante OX40
2.
Proc Natl Acad Sci U S A ; 119(49): e2203454119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36442116

RESUMO

The development of innate lymphoid cell (ILC) transcription factor reporter mice has shown a previously unexpected complexity in ILC hematopoiesis. Using novel polychromic mice to achieve higher phenotypic resolution, we have characterized bone marrow progenitors that are committed to the group 1 ILC lineage. These common ILC1/NK cell progenitors (ILC1/NKP), which we call "aceNKPs", are defined as lineage-Id2+IL-7Rα+CD25-α4ß7-NKG2A/C/E+Bcl11b-. In vitro, aceNKPs differentiate into group 1 ILCs, including NK-like cells that express Eomes without the requirement for IL-15, and produce IFN-γ and perforin upon IL-15 stimulation. Following reconstitution of Rag2-/-Il2rg-/- hosts, aceNKPs give rise to a spectrum of mature ILC1/NK cells (regardless of their tissue location) that cannot be clearly segregated into the traditional ILC1 and NK subsets, suggesting that group 1 ILCs constitute a dynamic continuum of ILCs that can develop from a common progenitor. In addition, aceNKP-derived ILC1/NK cells effectively ameliorate tumor burden in a model of lung metastasis, where they acquired a cytotoxic NK cell phenotype. Our results identify the primary ILC1/NK progenitor that lacks ILC2 or ILC3 potential and is strictly committed to ILC1/NK cell production irrespective of tissue homing.


Assuntos
Imunidade Inata , Interleucina-15 , Animais , Camundongos , Interleucina-15/genética , Células Matadoras Naturais , Perforina , Fatores de Transcrição , Proteínas Repressoras , Proteínas Supressoras de Tumor
3.
Nature ; 555(7696): 382-386, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29489751

RESUMO

Resistance to infection is critically dependent on the ability of pattern recognition receptors to recognize microbial invasion and induce protective immune responses. One such family of receptors are the C-type lectins, which are central to antifungal immunity. These receptors activate key effector mechanisms upon recognition of conserved fungal cell-wall carbohydrates. However, several other immunologically active fungal ligands have been described; these include melanin, for which the mechanism of recognition is hitherto undefined. Here we identify a C-type lectin receptor, melanin-sensing C-type lectin receptor (MelLec), that has an essential role in antifungal immunity through recognition of the naphthalene-diol unit of 1,8-dihydroxynaphthalene (DHN)-melanin. MelLec recognizes melanin in conidial spores of Aspergillus fumigatus as well as in other DHN-melanized fungi. MelLec is ubiquitously expressed by CD31+ endothelial cells in mice, and is also expressed by a sub-population of these cells that co-express epithelial cell adhesion molecule and are detected only in the lung and the liver. In mouse models, MelLec was required for protection against disseminated infection with A. fumigatus. In humans, MelLec is also expressed by myeloid cells, and we identified a single nucleotide polymorphism of this receptor that negatively affected myeloid inflammatory responses and significantly increased the susceptibility of stem-cell transplant recipients to disseminated Aspergillus infections. MelLec therefore recognizes an immunologically active component commonly found on fungi and has an essential role in protective antifungal immunity in both mice and humans.


Assuntos
Aspergillus fumigatus/imunologia , Lectinas Tipo C/imunologia , Melaninas/imunologia , Naftóis/imunologia , Animais , Aspergilose/imunologia , Aspergilose/microbiologia , Aspergilose/prevenção & controle , Aspergillus fumigatus/química , Aspergillus fumigatus/patogenicidade , Parede Celular/química , Parede Celular/imunologia , Feminino , Humanos , Macrófagos/imunologia , Melaninas/química , Camundongos , Camundongos Endogâmicos C57BL , Naftóis/química , Ratos , Ratos Sprague-Dawley , Esporos Fúngicos/química , Esporos Fúngicos/imunologia , Especificidade por Substrato
4.
Eur J Immunol ; 46(2): 381-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26558717

RESUMO

The C-type lectin receptor (CTLR), Clec4d (MCL, CLECSF8), is a member of the Dectin-2 cluster of CTLRs, which also includes the related receptors Mincle and Dectin-2. Like Mincle, Clec4d recognizes mycobacterial cord factor, trehalose dimycolate, and we recently demonstrated its key role in anti-mycobacterial immunity in mouse and man. Here, we characterized receptor expression in naïve mice, under inflammatory conditions, and during Mycobacterium bovis BCG infection using newly generated monoclonal antibodies. In naïve mice, Clec4d was predominantly expressed on myeloid cells within the peritoneal cavity, blood, and bone marrow. Unexpectedly, basal expression of Clec4d was very low on leukocytes in the lung. However, receptor expression was significantly upregulated on pulmonary myeloid cells during M. bovis BCG infection. Moreover, Clec4d expression could be strongly induced in vitro and in vivo by various microbial stimuli, including TLR agonists, but not exogenous cytokines. Notably, we show that Clec4d requires association with the signaling adaptor FcRγ and Mincle, but not Dectin-2, for surface expression. In addition, we provide evidence that Clec4d and Mincle, but not Dectin-2, are interdependently coregulated during inflammation and infection. These data show that Clec4d is an inducible myeloid-expressed CTLR in mice, whose expression is tightly linked to that of Mincle.


Assuntos
Fatores Corda/metabolismo , Lectinas Tipo C/metabolismo , Leucócitos/imunologia , Mycobacterium bovis/imunologia , Células Mieloides/imunologia , Receptores de IgG/metabolismo , Receptores Imunológicos/metabolismo , Tuberculose/imunologia , Animais , Células Cultivadas , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Imunidade Inata , Lectinas Tipo C/genética , Leucócitos/microbiologia , Pulmão/microbiologia , Pulmão/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium bovis/metabolismo , Células Mieloides/microbiologia , Cavidade Peritoneal/microbiologia , Cavidade Peritoneal/patologia , Receptores Imunológicos/genética , Transdução de Sinais , Tuberculose/veterinária
5.
Ann Rheum Dis ; 75(7): 1386-91, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26275430

RESUMO

BACKGROUND: Myeloid inhibitory C-type lectin-like receptor (MICL, Clec12A) is a C-type lectin receptor (CLR) expressed predominantly by myeloid cells. Previous studies have suggested that MICL is involved in controlling inflammation. OBJECTIVE: To determine the role of this CLR in inflammatory pathology using Clec12A(-/-) mice. METHODS: Clec12A(-/-) mice were generated commercially and primarily characterised using the collagen antibody-induced arthritis (CAIA) model. Mechanisms and progress of disease were characterised by clinical scoring, histology, flow cytometry, irradiation bone-marrow chimera generation, administration of blocking antibodies and in vivo imaging. Characterisation of MICL in patients with rheumatoid arthritis (RA) was determined by immunohistochemistry and single nucleotide polymorphism analysis. Anti-MICL antibodies were detected in patient serum by ELISA and dot-blot analysis. RESULTS: MICL-deficient animals did not present with pan-immune dysfunction, but exhibited markedly exacerbated inflammation during CAIA, owing to the inappropriate activation of myeloid cells. Polymorphisms of MICL were not associated with disease in patients with RA, but this CLR was the target of autoantibodies in a subset of patients with RA. In wild-type mice the administration of such antibodies recapitulated the Clec12A(-/-) phenotype. CONCLUSIONS: MICL plays an essential role in regulating inflammation during arthritis and is an autoantigen in a subset of patients with RA. These data suggest an entirely new mechanism underlying RA pathogenesis, whereby the threshold of myeloid cell activation can be modulated by autoantibodies that bind to cell membrane-expressed inhibitory receptors.


Assuntos
Artrite Experimental/genética , Artrite Reumatoide/genética , Lectinas Tipo C/fisiologia , Receptores Mitogênicos/fisiologia , Animais , Artrite Reumatoide/sangue , Artrite Reumatoide/etiologia , Artrite Reumatoide/patologia , Autoanticorpos/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Lectinas Tipo C/deficiência , Lectinas Tipo C/imunologia , Camundongos , Células Mieloides/metabolismo , Polimorfismo Genético , Receptores Mitogênicos/deficiência , Receptores Mitogênicos/imunologia , Membrana Sinovial/patologia
6.
Int Immunol ; 25(5): 271-7, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23606632

RESUMO

Myeloid and non-myeloid cells express members of the C-type lectin-like receptor (CTLR) family, which mediate crucial cellular functions during immunity and homeostasis. Of relevance here is the dendritic cell-associated C-type lectin-2 (Dectin-2) family of CTLRs, which includes blood dendritic cell antigen 2 (BDCA-2), dendritic cell immunoactivating receptor (DCAR), dendritic cell immunoreceptor (DCIR), Dectin-2, C-type lectin superfamily 8 (CLECSF8) and macrophage-inducible C-type lectin (Mincle). These CTLRs possess a single extracellular conserved C-type lectin-like domain and are capable of mediating intracellular signalling either directly, through integral signalling domains, or indirectly, by associating with signalling adaptor molecules. These receptors recognize a diverse range of endogenous and exogenous ligands, and can function as pattern recognition receptors for several classes of pathogens including fungi, bacteria and parasites, driving both innate and adaptive immunity. In this review, we summarize our knowledge of each of these receptors, highlighting the exciting discoveries that have been made in recent years.


Assuntos
Lectinas Tipo C/metabolismo , Animais , Humanos
7.
PLoS Biol ; 9(10): e1001169, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21990963

RESUMO

Sinorhizobium meliloti differentiates into persisting, nitrogen-fixing bacteroids within root nodules of the legume Medicago truncatula. Nodule-specific cysteine-rich antimicrobial peptides (NCR AMPs) and the bacterial BacA protein are essential for bacteroid development. However, the bacterial factors central to the NCR AMP response and the in planta role of BacA are unknown. We investigated the hypothesis that BacA is critical for the bacterial response towards NCR AMPs. We found that BacA was not essential for NCR AMPs to induce features of S. meliloti bacteroids in vitro. Instead, BacA was critical to reduce the amount of NCR AMP-induced membrane permeabilization and bacterial killing in vitro. Within M. truncatula, both wild-type and BacA-deficient mutant bacteria were challenged with NCR AMPs, but this resulted in persistence of the wild-type bacteria and rapid cell death of the mutant bacteria. In contrast, BacA was dispensable for bacterial survival in an M. truncatula dnf1 mutant defective in NCR AMP transport to the bacterial compartment. Therefore, BacA is critical for the legume symbiosis by protecting S. meliloti against the bactericidal effects of NCR AMPs. Host AMPs are ubiquitous in nature and BacA proteins are essential for other chronic host infections by symbiotic and pathogenic bacteria. Hence, our findings suggest that BacA-mediated protection of bacteria against host AMPs is a critical stage in the establishment of different prolonged host infections.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Cisteína/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Medicago truncatula/microbiologia , Sinorhizobium meliloti/efeitos dos fármacos , Sinorhizobium meliloti/fisiologia , Simbiose/efeitos dos fármacos , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/química , Proteínas de Bactérias/metabolismo , Medicago truncatula/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Dados de Sequência Molecular , Mutação/genética , Estrutura Secundária de Proteína , Sinorhizobium meliloti/citologia
8.
J Biol Chem ; 287(14): 10791-8, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22351783

RESUMO

The root nodules of certain legumes including Medicago truncatula produce >300 different nodule-specific cysteine-rich (NCR) peptides. Medicago NCR antimicrobial peptides (AMPs) mediate the differentiation of the bacterium, Sinorhizobium meliloti into a nitrogen-fixing bacteroid within the legume root nodules. In vitro, NCR AMPs such as NCR247 induced bacteroid features and exhibited antimicrobial activity against S. meliloti. The bacterial BacA protein is critical to prevent S. meliloti from being hypersensitive toward NCR AMPs. NCR AMPs are cationic and have conserved cysteine residues, which form disulfide (S-S) bridges. However, the natural configuration of NCR AMP S-S bridges and the role of these in the activity of the peptide are unknown. In this study, we found that either cysteine replacements or S-S bond modifications influenced the activity of NCR247 against S. meliloti. Specifically, either substitution of cysteines for serines, changing the S-S bridges from cysteines 1-2, 3-4 to 1-3, 2-4 or oxidation of NCR247 lowered its activity against S. meliloti. We also determined that BacA specifically protected S. meliloti against oxidized NCR247. Due to the large number of different NCRs synthesized by legume root nodules and the importance of bacterial BacA proteins for prolonged host infections, these findings have important implications for analyzing the function of these novel peptides and the protective role of BacA in the bacterial response toward these peptides.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Cisteína , Dissulfetos/química , Medicago truncatula/química , Nódulos Radiculares de Plantas/química , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Especificidade de Órgãos , Oxirredução , Sinorhizobium meliloti/efeitos dos fármacos , Sinorhizobium meliloti/metabolismo
9.
J Biol Chem ; 286(20): 17455-66, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21454518

RESUMO

Sinorhizobium meliloti forms a symbiosis with the legume alfalfa, whereby it differentiates into a nitrogen-fixing bacteroid. The lipid A species of S. meliloti are modified with very long-chain fatty acids (VLCFAs), which play a central role in bacteroid development. A six-gene cluster was hypothesized to be essential for the biosynthesis of VLCFA-modified lipid A. Previously, two cluster gene products, AcpXL and LpxXL, were found to be essential for S. meliloti lipid A VLCFA biosynthesis. In this paper, we show that the remaining four cluster genes are all involved in lipid A VLCFA biosynthesis. Therefore, we have identified novel gene products involved in the biosynthesis of these unusual lipid modifications. By physiological characterization of the cluster mutant strains, we demonstrate the importance of this gene cluster in the legume symbiosis and for growth in the absence of salt. Bacterial LPS species modified with VLCFAs are substantially less immunogenic than Escherichia coli LPS species, which lack VLCFAs. However, we show that the VLCFA modifications do not suppress the immunogenicity of S. meliloti LPS or affect the ability of S. meliloti to induce fluorescent plant defense molecules within the legume. Because VLCFA-modified lipids are produced by other rhizobia and mammalian pathogens, these findings will also be important in understanding the function and biosynthesis of these unusual fatty acids in diverse bacterial species.


Assuntos
Ácidos Graxos/biossíntese , Lipídeo A/biossíntese , Mutação , Sinorhizobium meliloti/metabolismo , Proteína de Transporte de Acila/genética , Proteína de Transporte de Acila/metabolismo , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fabaceae/microbiologia , Ácidos Graxos/genética , Lipídeo A/genética , Sinorhizobium meliloti/genética , Simbiose/fisiologia
10.
Front Microbiol ; 13: 988725, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160186

RESUMO

The rise in antimicrobial resistance (AMR), and increase in treatment-refractory AMR infections, generates an urgent need to accelerate the discovery and development of novel anti-infectives. Preclinical animal models play a crucial role in assessing the efficacy of novel drugs, informing human dosing regimens and progressing drug candidates into the clinic. The Innovative Medicines Initiative-funded "Collaboration for prevention and treatment of MDR bacterial infections" (COMBINE) consortium is establishing a validated and globally harmonized preclinical model to increase reproducibility and more reliably translate results from animals to humans. Toward this goal, in April 2021, COMBINE organized the expert workshop "Advancing toward a standardized murine model to evaluate treatments for AMR lung infections". This workshop explored the conduct and interpretation of mouse infection models, with presentations on PK/PD and efficacy studies of small molecule antibiotics, combination treatments (ß-lactam/ß-lactamase inhibitor), bacteriophage therapy, monoclonal antibodies and iron sequestering molecules, with a focus on the major Gram-negative AMR respiratory pathogens Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii. Here we summarize the factors of variability that we identified in murine lung infection models used for antimicrobial efficacy testing, as well as the workshop presentations, panel discussions and the survey results for the harmonization of key experimental parameters. The resulting recommendations for standard design parameters are presented in this document and will provide the basis for the development of a harmonized and bench-marked efficacy studies in preclinical murine pneumonia model.

11.
Front Microbiol ; 13: 988728, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160241

RESUMO

Antimicrobial resistance has become one of the greatest threats to human health, and new antibacterial treatments are urgently needed. As a tool to develop novel therapies, animal models are essential to bridge the gap between preclinical and clinical research. However, despite common usage of in vivo models that mimic clinical infection, translational challenges remain high. Standardization of in vivo models is deemed necessary to improve the robustness and reproducibility of preclinical studies and thus translational research. The European Innovative Medicines Initiative (IMI)-funded "Collaboration for prevention and treatment of MDR bacterial infections" (COMBINE) consortium, aims to develop a standardized, quality-controlled murine pneumonia model for preclinical efficacy testing of novel anti-infective candidates and to improve tools for the translation of preclinical data to the clinic. In this review of murine pneumonia model data published in the last 10 years, we present our findings of considerable variability in the protocols employed for testing the efficacy of antimicrobial compounds using this in vivo model. Based on specific inclusion criteria, fifty-three studies focusing on antimicrobial assessment against Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii were reviewed in detail. The data revealed marked differences in the experimental design of the murine pneumonia models employed in the literature. Notably, several differences were observed in variables that are expected to impact the obtained results, such as the immune status of the animals, the age, infection route and sample processing, highlighting the necessity of a standardized model.

12.
Front Immunol ; 10: 678, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024538

RESUMO

Group 2 innate lymphoid cells (ILC2) increase in frequency in eczema and allergic asthma patients, and thus represent a new therapeutic target cell for type-2 immune-mediated disease. The bromodomain and extra-terminal (BET) protein family of epigenetic regulators are known to support the expression of cell cycle and pro-inflammatory genes during type-1 inflammation, but have not been evaluated in type-2 immune responses. We isolated human ILC2 and examined the capacity of the BET protein inhibitor, iBET151, to modulate human ILC2 activation following IL-33 stimulation. iBET151 profoundly blocked expression of genes critical for type-2 immunity, including type-2 cytokines, cell surface receptors and transcriptional regulators of ILC2 differentiation and activation. Furthermore, in vivo administration of iBET151 during experimental mouse models of allergic lung inflammation potently inhibited lung inflammation and airways resistance in response to cytokine or allergen exposure. Thus, iBET151 effectively prevents human ILC2 activation and dampens type-2 immune responses.


Assuntos
Anti-Inflamatórios/farmacologia , Hipersensibilidade/tratamento farmacológico , Pneumonia/tratamento farmacológico , Proteínas/antagonistas & inibidores , Alérgenos/imunologia , Animais , Asma/tratamento farmacológico , Asma/imunologia , Asma/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Humanos , Hipersensibilidade/imunologia , Hipersensibilidade/metabolismo , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/metabolismo , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Linfócitos/metabolismo , Camundongos , Pneumonia/imunologia , Pneumonia/metabolismo
13.
Microbes Infect ; 18(7-8): 505-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27005451

RESUMO

The heterodimeric mycobacterial receptors, macrophage C-type lectin (MCL) and macrophage inducible C-type lectin (Mincle), are upregulated at the cell surface following microbial challenge, but the mechanisms underlying this response are unclear. Here we report that microbial stimulation triggers Mincle expression through the myeloid differentiation primary response gene 88 (MyD88) pathway; a process that does not require MCL. Conversely, we show that MCL is constitutively expressed but retained intracellularly until Mincle is induced, whereupon the receptors form heterodimers which are translocated to the cell surface. Thus this "two-step" model for induction of these key receptors provides new insights into the underlying mechanisms of anti-mycobacterial immunity.


Assuntos
Interações Hospedeiro-Patógeno , Lectinas Tipo C/metabolismo , Proteínas de Membrana/metabolismo , Mycobacterium/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Imunológicos/metabolismo , Animais , Células Cultivadas , Expressão Gênica , Lectinas Tipo C/genética , Macrófagos/imunologia , Macrófagos/microbiologia , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Receptores de Superfície Celular/genética , Receptores Imunológicos/genética
14.
Cell Host Microbe ; 17(2): 252-9, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25674984

RESUMO

The interaction of microbes with pattern recognition receptors (PRRs) is essential for protective immunity. While many PRRs that recognize mycobacteria have been identified, none is essentially required for host defense in vivo. Here, we have identified the C-type lectin receptor CLECSF8 (CLEC4D, MCL) as a key molecule in anti-mycobacterial host defense. Clecsf8-/- mice exhibit higher bacterial burdens and increased mortality upon M. tuberculosis infection. Additionally, Clecsf8 deficiency is associated with exacerbated pulmonary inflammation, characterized by enhanced neutrophil recruitment. Clecsf8-/- mice show reduced mycobacterial uptake by pulmonary leukocytes, but infection with opsonized bacteria can restore this phagocytic defect as well as decrease bacterial burdens. Notably, a CLECSF8 polymorphism identified in humans is associated with an increased susceptibility to pulmonary tuberculosis. We conclude that CLECSF8 plays a non-redundant role in anti-mycobacterial immunity in mouse and in man.


Assuntos
Lectinas Tipo C/metabolismo , Proteínas de Membrana/metabolismo , Mycobacterium tuberculosis/imunologia , Animais , Carga Bacteriana , Modelos Animais de Doenças , Predisposição Genética para Doença , Humanos , Pulmão/patologia , Camundongos , Camundongos Knockout , Neutrófilos/imunologia , Fagocitose , Polimorfismo Genético , Receptores Imunológicos/metabolismo , Análise de Sobrevida , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/patologia
15.
FEMS Microbiol Rev ; 37(3): 364-83, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22998605

RESUMO

Rhizobial soil bacteria can form a symbiosis with legumes in which the bacteria fix atmospheric nitrogen into ammonia that can be utilized by the host. The plant, in turn, supplies the rhizobia with a carbon source. After infecting the host cell, the bacteria differentiate into a distinct bacteroid form, which is able to fix nitrogen. The bacterial BacA protein is essential for bacteroid differentiation in legumes producing nodule-specific cysteine-rich peptides (NCRs), which induce the terminal differentiation of the bacteria into bacteroids. NCRs are antimicrobial peptides similar to mammalian defensins, which are important for the eukaryotic response to invading pathogens. The BacA protein is essential for rhizobia to survive the NCR peptide challenge. Similarities in the lifestyle of intracellular pathogenic bacteria suggest that host factors might also be important for inducing chronic infections associated with Brucella abortus and Mycobacterium tuberculosis. Moreover, rhizobial lipopolysaccharide is modified with an unusual fatty acid, which plays an important role in protecting the bacteria from environmental stresses. Mutants defective in the biosynthesis of this fatty acid display bacteroid development defects within the nodule. In this review, we will focus on these key components, which affect rhizobial bacteroid development and survival.


Assuntos
Fabaceae/microbiologia , Fabaceae/fisiologia , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/fisiologia , Simbiose , Amônia/metabolismo , Carbono/metabolismo , Fabaceae/metabolismo , Fixação de Nitrogênio , Rhizobium/crescimento & desenvolvimento , Rhizobium/metabolismo , Nódulos Radiculares de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA