Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(19): 7553-7565, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33961419

RESUMO

Many molecular machines are built from modular components with well-defined motile capabilities, such as axles and wheels. Hinges are particularly useful, as they provide the minimum flexibility needed for a simple and pronounced conformational change. Compounds with multiple stable conformers are common, but molecular hinges almost exclusively operate via dihedral rotations rather than truly hinge-like clamping mechanisms. An ideal molecular hinge would better reproduce the behavior of hinged devices, such as gates and tweezers, while remaining soluble, scalable, and synthetically versatile. Herein, we describe two isomeric macrocycles with clamp-like open and closed geometries, which crystallize as separate polymorphs but interconvert freely in solution. An unusual one-pot addition cyclization reaction was used to produce the macrocycles on a multigram scale from inexpensive reagents, without supramolecular templating or high-dilution conditions. Using mechanistic information from NMR kinetic studies and at-line mass spectrometry, we developed a semicontinuous flow synthesis with maximum conversions of 85-93% and over 80% selectivity for a single isomer. The macrocycles feature voids that are sterically protected from guests, including reactive species such as fluoride ions, and could therefore serve as chemically inert hinges for adaptive supramolecular receptors and flexible porous materials.


Assuntos
Compostos Macrocíclicos/síntese química , Cinética , Compostos Macrocíclicos/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular
2.
J Am Chem Soc ; 143(43): 18216-18232, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34677973

RESUMO

Extended anionic frameworks based on condensation of polyhedral main group non-metal anions offer a wide range of structure types. Despite the widespread chemistry and earth abundance of phosphates and silicates, there are no reports of extended ultraphosphate anions with lithium. We describe the lithium ultraphosphates Li3P5O14 and Li4P6O17 based on extended layers and chains of phosphate, respectively. Li3P5O14 presents a complex structure containing infinite ultraphosphate layers with 12-membered rings that are stacked alternately with lithium polyhedral layers. Two distinct vacant tetrahedral sites were identified at the end of two distinct finite Li6O1626- chains. Li4P6O17 features a new type of loop-branched chain defined by six PO43- tetrahedra. The ionic conductivities and electrochemical properties of Li3P5O14 were examined by impedance spectroscopy combined with DC polarization, NMR spectroscopy, and galvanostatic plating/stripping measurements. The structure of Li3P5O14 enables three-dimensional lithium migration that affords the highest ionic conductivity (8.5(5) × 10-7 S cm-1 at room temperature for bulk), comparable to that of commercialized LiPON glass thin film electrolytes, and lowest activation energy (0.43(7) eV) among all reported ternary Li-P-O phases. Both new lithium ultraphosphates are predicted to have high thermodynamic stability against oxidation, especially Li3P5O14, which is predicted to be stable to 4.8 V, significantly higher than that of LiPON and other solid electrolytes. The condensed phosphate units defining these ultraphosphate structures offer a new route to optimize the interplay of conductivity and electrochemical stability required, for example, in cathode coatings for lithium ion batteries.

3.
Chemistry ; 24(20): 5204-5212, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29112322

RESUMO

A ligand field molecular mechanics (LFMM) force field has been constructed for the spin states of [Fe(bpp)2 ]2+ (bpp=2,6-di(pyrazol-1-yl)pyridine) and related complexes. A new charge scheme is employed which interpolates between partial charges for neutral bpp and protonated [H3 bpp]3+ to achieve a target metal charge. The LFMM angular overlap model (AOM) parameters are fitted to fully ab initio d orbital energies. However, several AOM parameter sets are possible. The ambiguity is resolved by calculating the Jahn-Teller distortion mode for high spin, which indicates that in [Fe(bpp)2 ]2+ pyridine is a π-acceptor and pyrazole a weak π-donor. The alternative fit, assumed previously, where both ligands act as π-donors leads to an inconsistent distortion. LFMM optimisations in the presence of [BF4 ]- or [PF6 ]- anions are in good agreement with experiment and the model also correctly predicts the spin state energetics for 3-pyrazolyl substituents where the interactions are mainly steric. However, for 4-pyridyl or 4-pyrazolyl substituents, LFMM only treats the electrostatic contribution which, for the pyridyl substituents, generates a fair correlation with the spin crossover transition temperatures, T1/2 , but in the reverse sense to the dominant electronic effect. Thus, LFMM generates its smallest spin state energy difference for the substituent with the highest T1/2 . One parameter set for all substituted bpp ligands is insufficient and further LFMM development will be required.

4.
Faraday Discuss ; 193: 113-131, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27722353

RESUMO

Extensive studies of various families of conjugated molecules in metal|molecule|metal junctions suggest that the mechanism of conductance is usually tunnelling for molecular lengths < ca. 4 nm, and that for longer molecules, coherence is lost as a hopping element becomes more significant. In this work we present evidence that, for a family of conjugated, redox-active metal complexes, hopping may be a significant factor for even the shortest molecule studied (ca. 1 nm between contact atoms). The length dependence of conductance for two series of such complexes which differ essentially in the number of conjugated 1,4-C6H4- rings in the structures has been studied, and it is found that the junction conductances vary linearly with molecular length, consistent with a hopping mechanism, whereas there is significant deviation from linearity in plots of log(conductance) vs. length that would be characteristic of tunnelling, and the slopes of the log(conductance)-length plots are much smaller than expected for an oligophenyl system. Moreover, the conductances of molecular junctions involving the redox-active molecules, [M(pyterpy)2]2+/3+ (M = Co, Fe) have been studied as a function of electrochemical potential in ionic liquid electrolyte, and the conductance-overpotential relationship is found to fit well with the Kuznetsov-Ulstrup relationship, which is essentially a hopping description.

5.
Angew Chem Int Ed Engl ; 55(13): 4327-31, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26929084

RESUMO

The influence of ligands on the spin state of a metal ion is of central importance for bioinorganic chemistry, and the production of base-metal catalysts for synthesis applications. Complexes derived from [Fe(bpp)2 ](2+) (bpp=2,6-di{pyrazol-1-yl}pyridine) can be high-spin, low-spin, or spin-crossover (SCO) active depending on the ligand substituents. Plots of the SCO midpoint temperature (T1/2 ) in solution vs. the relevant Hammett parameter show that the low-spin state of the complex is stabilized by electron-withdrawing pyridyl ("X") substituents, but also by electron-donating pyrazolyl ("Y") substituents. Moreover, when a subset of complexes with halogeno X or Y substituents is considered, the two sets of compounds instead show identical trends of a small reduction in T1/2 for increasing substituent electronegativity. DFT calculations reproduce these disparate trends, which arise from competing influences of pyridyl and pyrazolyl ligand substituents on Fe-L σ and π bonding.

6.
Chemistry ; 21(12): 4805-16, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25641549

RESUMO

Crystalline [Fe(bppSMe)2][BF4]2 (1; bppSMe = 4-(methylsulfanyl)-2,6-di(pyrazol-1-yl)pyridine) undergoes an abrupt spin-crossover (SCO) event at 265±5 K. The crystals also undergo a separate phase transition near 205 K, involving a contraction of the unit-cell a axis to one-third of its original value (high-temperature phase 1; Pbcn, Z = 12; low-temperature phase 2; Pbcn, Z = 4). The SCO-active phase 1 contains two unique molecular environments, one of which appears to undergo SCO more gradually than the other. In contrast, powder samples of 1 retain phase 1 between 140-300 K, although their SCO behaviour is essentially identical to the single crystals. The compounds [Fe(bppBr)2][BF4]2 (2; bppBr = 4-bromo-2,6-di(pyrazol-1-yl)pyridine) and [Fe(bppI)2][BF4]2 (3; bppI = 4-iodo-2,6-di(pyrazol-1-yl)-pyridine) exhibit more gradual SCO near room temperature, and adopt phase 2 in both spin states. Comparison of 1-3 reveals that the more cooperative spin transition in 1, and its separate crystallographic phase transition, can both be attributed to an intermolecular steric interaction involving the methylsulfanyl substituents. All three compounds exhibit the light-induced excited-spin-state trapping (LIESST) effect with T(LIESST = 70-80 K), but show complicated LIESST relaxation kinetics involving both weakly cooperative (exponential) and strongly cooperative (sigmoidal) components.

7.
Inorg Chem ; 54(2): 682-93, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25563430

RESUMO

Reaction of 2,6-difluoropyridine with 2 equiv of indazole and NaH at room temperature affords a mixture of 2,6-bis(indazol-1-yl)pyridine (1-bip), 2-(indazol-1-yl)-6-(indazol-2-yl)pyridine (1,2-bip), and 2,6-bis(indazol-2-yl)pyridine (2-bip), which can be separated by solvent extraction. A two-step procedure using the same conditions also affords both 2-(indazol-1-yl)-6-(pyrazol-1-yl)pyridine (1-ipp) and 2-(indazol-2-yl)-6-(pyrazol-1-yl)pyridine (2-ipp). These are all annelated analogues of 2,6-di(pyrazol-1-yl)pyridine, an important ligand for spin-crossover complexes. Iron(II) complexes [Fe(1-bip)2](2+), [Fe(1,2-bip)2](2+), and [Fe(1-ipp)2](2+) are low-spin at room temperature, reflecting sterically imposed conformational rigidity of the 1-indazolyl ligands. In contrast, the 2-indazolyl complexes [Fe(2-bip)2](2+) and [Fe(2-ipp)2](2+) are high-spin in solution at room temperature, whereas salts of [Fe(2-bip)2](2+) exhibit thermal spin transitions in the solid state. Notably, [Fe(2-bip)2][BF4]2·2MeNO2 adopts a terpyridine embrace lattice structure and undergoes a spin transition near room temperature after annealing, resulting in thermal hysteresis that is wider than previously observed for this structure type (T1/2 = 266 K, ΔT = 16-20 K). This reflects enhanced mechanical coupling between the cations in the lattice through interdigitation of their ligand arms, which supports a previously proposed structure/function relationship for spin-crossover materials with this form of crystal packing. All of the compounds in this work exhibit blue fluorescence in solution under ambient conditions. In most cases, the ligand-based emission maxima are slightly red shifted upon complexation, but there is no detectable correlation between the emission maximum and the spin state of the iron centers.

8.
Inorg Chem ; 54(13): 6319-30, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26351707

RESUMO

The synthesis of 4-methyl-2,6-di(pyrazol-1-yl)pyridine (L) and four salts of [FeL2]X2 (X­ = BF(4)(­), 1; X­ = ClO(4)(­), 2; X­ = PF(6)(­), 3; X­ = CF3SO(3)(­), 4) are reported. Powder samples of 1 and 2 both exhibit abrupt, hysteretic spin-state transitions on cooling, with T(1/2)↓ = 204 and T(1/2)↑ = 209 K (1), and T(1/2)↓ = 175 and T(1/2)↑ = 193 K (2). The 18 K thermal hysteresis loop for 2 is unusually wide for a complex of this type. Single crystal structures of 2 show it to exhibit a Jahn­Teller-distorted six-coordinate geometry in its high-spin state, which would normally inhibit spin-crossover. Bulk samples of 1 and 2 are isostructural by X-ray powder diffraction, and undergo a crystallographic phase change during their spin-transitions. At temperatures below T(1/2), exposing both compounds to 10(­5) Torr pressure inside the powder diffractometer causes a reversible transformation back to the high-temperature crystal phase. Consideration of thermodynamic data implies this cannot be accompanied by a low → high spin-state change, however. Both compounds also exhibit the LIESST effect, with 2 exhibiting an unusually high T(LIESST) of 112 K. The salts 3 and 4 are respectively high-spin and low-spin between 3 and 300 K, with crystalline 3 exhibiting a more pronounced version of the same Jahn­Teller distortion.

9.
Inorg Chem ; 54(13): 6319-30, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26052980

RESUMO

The synthesis of 4-methyl-2,6-di(pyrazol-1-yl)pyridine (L) and four salts of [FeL2]X2 (X(-) = BF4(-), 1; X(-) = ClO4(-), 2; X(-) = PF6(-), 3; X(-) = CF3SO3(-), 4) are reported. Powder samples of 1 and 2 both exhibit abrupt, hysteretic spin-state transitions on cooling, with T1/2↓ = 204 and T1/2↑ = 209 K (1), and T1/2↓ = 175 and T1/2↑ = 193 K (2). The 18 K thermal hysteresis loop for 2 is unusually wide for a complex of this type. Single crystal structures of 2 show it to exhibit a Jahn-Teller-distorted six-coordinate geometry in its high-spin state, which would normally inhibit spin-crossover. Bulk samples of 1 and 2 are isostructural by X-ray powder diffraction, and undergo a crystallographic phase change during their spin-transitions. At temperatures below T1/2, exposing both compounds to 10(-5) Torr pressure inside the powder diffractometer causes a reversible transformation back to the high-temperature crystal phase. Consideration of thermodynamic data implies this cannot be accompanied by a low → high spin-state change, however. Both compounds also exhibit the LIESST effect, with 2 exhibiting an unusually high T(LIESST) of 112 K. The salts 3 and 4 are respectively high-spin and low-spin between 3 and 300 K, with crystalline 3 exhibiting a more pronounced version of the same Jahn-Teller distortion.

10.
Chem Mater ; 36(6): 2799-2809, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38558920

RESUMO

Gelation by small molecules is a topic of enormous importance in catalysis, nanomaterials, drug delivery, and pharmaceutical crystallization. The mechanism by which gelators self-organize into a fibrous gel network is poorly understood. Herein, we describe the crystal structures and gelation properties of a library of bis(urea) compounds and show, via molecular dynamics simulations, how gelator aggregation progresses from a continuous pattern of supramolecular motifs to a homogeneous fiber network. Our model suggests that lamellae with asymmetric surfaces scroll into uniform unbranched fibrils, while sheets with symmetric surfaces undergo stacking to form crystals. The self-assembly of asymmetric lamellae is associated with specific molecular features, such as the presence of narrow and flexible end groups with high packing densities, and likely represents a general mechanism for the formation of small-molecule gels.

11.
Chem Sci ; 15(15): 5496-5506, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38638216

RESUMO

Tetrapyridyl-functionalized phosphinines were prepared and structurally characterized. The donor-functionalized aromatic phosphorus heterocycles react highly selectively and even reversibly with water. Calculations reveal P,N-cooperativity for this process, with the flanking pyridyl groups serving to kinetically enhance the formal oxidative addition process of H2O to the low-coordinate phosphorus atom via H-bonding. Subsequent tautomerization forms 1,2-dihydrophosphinine derivatives, which can be quantitatively converted back to the phosphinine by applying vacuum, even at room temperature. This process can be repeated numerous times, without any sign of decomposition of the phosphinine. In the presence of CuI·SMe2, dimeric species of the type ([Cu2I2(phosphinine)]2) are formed, in which each phosphorus atom shows the less common µ2-bridging 2e--lone-pair-donation to two Cu(i)-centres. Our results demonstrate that fully unsaturated phosphorus heterocycles, containing reactive P[double bond, length as m-dash]C double bonds, are interesting candidates for the activation of E-H bonds, while the aromaticity of such compounds plays an appreciable role in the reversibility of the reaction, supported by NICS calculations.

12.
Cryst Growth Des ; 22(3): 1960-1971, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35431660

RESUMO

The complex salts [Fe(L 1)2]X2 (1X 2 ; L 1 = 4-(isopropyldisulfanyl)-2,6-bis(pyrazolyl)pyridine; X- = BF4 -, ClO4 -) form solvated crystals from common organic solvents. Crystals of 1X 2 ·Me2CO show abrupt spin transitions near 160 K, with up to 22 K thermal hysteresis. 1X 2 ·Me2CO cocrystallizes with other, less cooperative acetone solvates, which all transform into the same solvent-free materials 1X 2 ·sf upon exposure to air, or mild heating. Conversion of 1X 2 ·Me2CO to 1X 2 ·sf proceeds in a single-crystal to single-crystal fashion. 1X 2 ·sf are not isomorphous with the acetone solvates, and exhibit abrupt spin transitions at low temperature with hysteresis loops of 30-38 K (X- = BF4 -) and 10-20 K (X- = ClO4 -), depending on the measurement method. Interestingly, the desolvation has an opposite effect on the SCO temperature and hysteresis in the two salts. The hysteretic spin transitions in 1X 2 ·Me2CO and 1X 2 ·sf do not involve a crystallographic phase change but are accompanied by a significant rearrangement of the metal coordination sphere. Other solvates 1X 2 ·MeNO2, 1X 2 ·MeCN, and 1X 2 ·H2O are mostly isomorphous with each other and show more gradual spin-crossover equilibria near room temperature. All three of these lattice types have similar unit cell dimensions and contain cations associated into chains through pairwise, intermolecular S···π interactions. Polycrystalline [Fe(L 2)2][BF4]2·MeNO2 (2[BF 4 ] 2 ·MeNO2; L 2 = 4-(methyldisulfanyl)-2,6-bis(pyrazolyl)pyridine) shows an abrupt spin transition just above room temperature, with an unsymmetrical and structured hysteresis loop, whose main features are reversible upon repeated thermal scanning.

13.
Chem Sci ; 12(5): 1702-1719, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34163930

RESUMO

The implementation of machine learning models has brought major changes in the decision-making process for materials design. One matter of concern for the data-driven approaches is the lack of negative data from unsuccessful synthetic attempts, which might generate inherently imbalanced datasets. We propose the application of the one-class classification methodology as an effective tool for tackling these limitations on the materials design problems. This is a concept of learning based only on a well-defined class without counter examples. An extensive study on the different one-class classification algorithms is performed until the most appropriate workflow is identified for guiding the discovery of emerging materials belonging to a relatively small class, that being the weakly bound polyaromatic hydrocarbon co-crystals. The two-step approach presented in this study first trains the model using all the known molecular combinations that form this class of co-crystals extracted from the Cambridge Structural Database (1722 molecular combinations), followed by scoring possible yet unknown pairs from the ZINC15 database (21 736 possible molecular combinations). Focusing on the highest-ranking pairs predicted to have higher probability of forming co-crystals, materials discovery can be accelerated by reducing the vast molecular space and directing the synthetic efforts of chemists. Further on, using interpretability techniques a more detailed understanding of the molecular properties causing co-crystallization is sought after. The applicability of the current methodology is demonstrated with the discovery of two novel co-crystals, namely pyrene-6H-benzo[c]chromen-6-one (1) and pyrene-9,10-dicyanoanthracene (2).

14.
Chem Commun (Camb) ; 53(99): 13268-13271, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29186217

RESUMO

Light-Induced Excited Spin State Trapping (LIESST) data are reported for seven isostructural solvate salts from the iron(ii)/2,6-di(pyrazol-1-yl)pyridine family. A complicated relationship between their spin-crossover T1/2 and T(LIESST) values may reflect low-temperature thermal and light-induced symmetry breaking, which is shown by one of the compounds but not by two others.

15.
Dalton Trans ; 44(20): 9417-25, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-25913745

RESUMO

The syntheses of 4-mercapto-2,6-di(pyrazol-1-yl)pyridine (bppSH) and bis[2,6-di(pyrazol-1-yl)pyrid-4-yl]disulfide (bppSSbpp) are reported. In contrast to previously published "back-to-back" bis-[2,6-di(pyrazol-1-yl)pyridine] derivatives, which form coordination polymers with transition ions that are usually insoluble, bppSSbpp yields soluble oligomeric complexes with iron(ii) and zinc(ii). Mass spectrometry and DOSY data show that [{Fe(µ-bppSSbpp)}n](2n+) and [{Zn(µ-bppSSbpp)}n](2n+) form tetranuclear metallacycles in nitromethane solution (n = 4), although (1)H NMR and conductivity measurements imply the iron compound may undergo more fragmentation than its zinc congener. Both [{Fe(bppSH)2](2+) and [{Fe(µ-bppSSbpp)}n](2n+) exhibit thermal spin-crossover in CD3NO2 solution, with midpoint temperatures near 245 K. The similarity of these equilibria implies there is little cooperativity between the iron centres in the metallacyclic structures.

16.
Dalton Trans ; 43(20): 7577-88, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24705977

RESUMO

Syntheses of 2,6-di(5-aminopyrazol-3-yl)pyridine (L(1)), 2,6-di(5-tertbutylcarboxamidopyrazol-3-yl)pyridine (L(2)), 2,6-di(5-tertbutylpyrazol-3-yl)pyridine (L(3)), 2-(5-tertbutylpyrazol-3-yl)-6-(5-methylpyrazol-3-yl)pyridine (L(4)) and 2-(5-tertbutylpyrazol-3-yl)-6-(5-aminopyrazol-3-yl)pyridine (L(5)) are reported. Iron complex salts of the first four ligands were crystallographically characterised. The structures exhibit intermolecular hydrogen bonding between the cations and the anions and/or solvent, leading to a fluorite (flu) net, a 1D ladder structure, and a homochiral self-penetrating helical network related to the (10,3)-a (srs) topology. All the complexes are high-spin in the crystal, and bulk samples are also fully or predominantly high-spin at room temperature and below although two of the dried materials exhibit partial spin-state transitions on cooling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA