Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Soft Matter ; 16(7): 1760-1770, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31859322

RESUMO

Photo-initiated thiol-ene click chemistry is used to develop shape memory liquid crystalline networks (LCNs). A biphenyl-based di-vinyl monomer is synthesized and cured with a di-thiol chain extender and a tetra-thiol crosslinker using UV light. The effects of photo-initiator concentration and UV light intensity on the curing behavior and liquid crystalline (LC) properties of the LCNs are investigated. The chemical composition is found to significantly influence the microstructure and the related thermomechanical properties of the LCNs. The structure-property relationship is further explored using molecular dynamics simulations, revealing that the introduction of the chain extender promotes the formation of an ordered smectic LC phase instead of agglomerated structures. The concentration of the chain extender affects the liquid crystallinity of the LCNs, resulting in distinct thermomechanical and shape memory properties. This class of LCNs exhibits fast curing rates, high conversion levels, and tailorable liquid crystallinity, making it a promising material system for advanced manufacturing, where complex and highly ordered structures can be produced with fast reaction kinetics and low energy consumption.

2.
Soft Matter ; 13(29): 5021-5027, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28650493

RESUMO

A liquid crystalline epoxy network (LCEN) with exchangeable disulfide bonds is synthesized by polymerizing a biphenyl-based epoxy monomer with an aliphatic dicarboxylic acid curing agent containing a disulfide bond. The effect of disulfide bonds on curing behavior and liquid crystalline (LC) phase formation of the LCEN is investigated. The presence of the disulfide bonds results in an increase in the reaction rate, leading to a reduction in liquid crystallinity of the LCEN. In order to promote LC phase formation and stabilize the self-assembled LC domains, a similar aliphatic dicarboxylic acid without the disulfide bond is used as a co-curing agent to reduce the amount of exchangeable disulfide bonds in the system. After optimizing the molar ratio of the two curing agents, the resulting LCEN exhibits improved reprocessability and recyclability because of the disulfide exchange reactions, while preserving LC properties, such as the reversible LC phase transition and macroscopic LC orientation, for shape memory applications.

3.
Macromol Rapid Commun ; 35(11): 1068-74, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24668919

RESUMO

A novel method, epoxidation/reduction of vegetable oils, is developed to prepare bio-based polyols for the manufacture of polyurethanes (PUs). These polyols are synthesized from castor oil (CO), epoxidized soybean oil, and epoxidized linseed oil and their molecular structures are characterized. They are used to prepare a variety of PUs, and their thermomechanical properties are compared to those of PU made with petroleum-based polyol (P-450). It is shown that PUs made with polyols from soybean and linseed oil exhibit higher glass transition temperatures, tensile strength, and Young's modulus and PU made with polyol from CO exhibits higher elongation at break and toughness than PU made with P-450. However, PU made with P-450 displays better thermal resistance because of tri-ester structure and terminal functional groups. The method provides a versatile way to prepare bio-polyols from vegetable oils, and it is expected to partially or completely replace petroleum-based polyols in PUs manufacture.


Assuntos
Polímeros/química , Poliuretanos/química , Módulo de Elasticidade , Óleos de Plantas/química , Óleo de Soja/química , Temperatura , Resistência à Tração
4.
Cureus ; 14(9): e28925, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36237749

RESUMO

Radiation-induced fibrosis is a potentially severe late complication after high-dose radiotherapy. Over the last decade, there has been increasing use of stereotactic body radiation therapy (SBRT) to treat both primary and metastatic malignancies. While there has been evolving evidence of appropriate dose constraints for certain organs receiving hypofractionated radiotherapy, the risk, and appropriate dose constraints to limit the risk of radiation-induced muscle fibrosis are poorly defined. In this report, two patients are presented who underwent SBRT for osseous oligometastatic renal cell carcinoma. While the treatment was well-tolerated with no acute toxicities and complete local control of the metastasis, both patients experienced late toxicity of radiation-induced fibrosis in the adjacent musculature. In both cases, toxicity was nonresponsive to medical interventions and was severe enough to require surgical resection of the affected tissue. Following surgery, both patients reported improved pain relief and mobility. Further studies are needed to explore the dose constraints that may reduce the risk of radiation-induced muscle fibrosis in five-fraction treatment.

5.
ACS Appl Mater Interfaces ; 14(30): 35087-35096, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35866446

RESUMO

Liquid crystal elastomers (LCEs) are stimuli-responsive materials capable of reversible and programmable shape change in response to an environmental stimulus. Despite the highly responsive nature of these materials, the modest elastic modulus and blocking stress exhibited by these actuating materials can be limiting in some engineering applications. Here, we engineer a semicrystalline LCE, where the incorporation of semicrystallinity in a lightly cross-linked liquid crystalline network yields tough and highly responsive materials. Directed self-assembly can be employed to program director profiles through the thickness of the semicrystalline LCE. In short, we use the alignment of a liquid crystal monomer phase to pattern the anisotropy of a semicrystalline polymer network. Both the semicrystalline-liquid crystalline and liquid crystalline-isotropic phase transition temperatures provide controllable shape transformations. A planarly aligned sample's normalized dimension parallel to the nematic director decreases from 1 at room temperature to 0.42 at 250 °C. The introduction of the semicrystalline nature also enhances the mechanical properties exhibited by the semicrystalline LCE. Semicrystalline LCEs have a storage modulus of 390 MPa at room temperature, and monodomain samples are capable of generating a contractile stress of 2.7 MPa on heating from 25 to 50 °C, far below the nematic to isotropic transition temperature. The robust mechanical properties of this material combined with the high actuation strain can be leveraged for applications such as soft robotics and actuators capable of doing significant work.

6.
J Nanosci Nanotechnol ; 11(5): 3970-8, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21780394

RESUMO

In this work, the effect of multiwalled carbon nanotubes on the properties of a unique, low viscosity bisphenol E cyanate ester (BECy) resin is characterized during various stages of nanocomposite preparation. The effect of surface functionalization, with nanotubes containing hydroxyl groups (OH CNTs) and carboxylic acid groups (COOH CNTs), on the rheological, cure, thermal, and impact properties of the nanocomposite properties are also examined. Based on rheology measurements prior to cure, the unfunctionalized nanotube suspensions are found to exhibit the highest viscosity and the most dramatic shear thinning behavior. Cure characterization using differential scanning calorimetry (DSC) reveals that the nanotubes catalyze the cure of BECy and the OH CNTs exhibiting the most dramatic catalytic effect. The DSC data is well described by an nth order autocatalytic model. The impact strength of fully cured BECy is found to increase by 91% and 63% upon incorporation of 1 wt% COOH and OH CNTs, respectively. While incorporation of 1 wt% unfunctionalized nanotubes results in an 8 degrees C decrease in the glass transition temperature (T(g)) of BECy, chemical functionalization greatly mitigates the magnitude of the reduction.

7.
ACS Omega ; 5(17): 9977-9984, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32391485

RESUMO

Nanoscale semi-interpenetrating polymer networks of bio-based poly(ε-caprolactone) (PCL) and polymerized tung oil have been prepared via in situ cationic polymerization and compatibilization in a homogeneous solution. This novel blending technique produced a nanoscale morphology of poly(ε-caprolactone) with average particle sizes as small as 100 nm dispersed in a cross-linked tung oil matrix for 20 and 30 wt % PCL blend compositions. In addition, the exothermic cationic polymerization of tung oil in the presence of the PCL homogeneous solution created a microporous morphology with open three-dimensional interconnected cluster structures. The porous morphology was found to be composition-dependent (the pore size and interconnectivity decreased with increasing PCL content in the blend). The values of the cross-link density and storage modulus in the glassy state for fully cured samples increased significantly and reached a maximum for the 20 wt % PCL blend. This simple, versatile, low-cost strategy for preparing nanoscale and interconnected three-dimensional cluster structures with a microporous morphology and desired properties should be widely applicable for new polymer systems.

8.
Sci Rep ; 10(1): 20214, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33214668

RESUMO

The development of multi-stimuli-responsive shape memory polymers has received increasing attention because of its scientific and technological significance. In this work, epoxy elastomers with reversible crosslinks are synthesized by polymerizing an anthracene-functionalized epoxy monomer, a diepoxy comonomer, and a dicarboxylic acid curing agent. The synthesized elastomers exhibit active responses to both light and heat enabled by the incorporated anthracene groups. When exposed to 365 nm UV light, additional crosslinking points are created by the photo-induced dimerization of pendant anthracene groups. The formation of the crosslinking points increases modulus and glass transition temperature of the elastomers, allowing for the fixation of a temporary shape at room temperature. The temporary shape remains stable until an external heat stimulus is applied to trigger the scission of the dimerized anthracene, which reduces the modulus and glass transition temperature and allows the elastomers to recover their original shapes. The effects of external stimuli on the thermal and dynamic mechanical properties of the elastomers are investigated experimentally and are correlated with molecular dynamics simulations that reveal the changes of structure and dynamics of the anthracene molecules and flexible chains.

9.
ACS Omega ; 3(8): 8718-8723, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459003

RESUMO

A series of supported alkali metal salts were investigated as catalysts to produce propylene oxide (PO) from biomass-derived 1,2-propanediol via dehydrative epoxidation in a solid-gas reaction system. The effects of supports, cations, and anions in the alkali metal salts and calcination temperature were investigated by X-ray diffraction and CO2-temperature-programmed desorption. The results indicate the catalysts with relative mild basicity having higher yields of PO. The highest yield of PO is 58.2% from reactions at 400 °C at an atmospheric pressure over KNO3/SiO2. In addition, the catalyst could be reused after calcination in air at 550 °C.

10.
RSC Adv ; 8(25): 13780-13788, 2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35539344

RESUMO

Four different biorenewable methacrylated/acrylated monomers, namely, methacrylated fatty acid (MFA), methacrylated eugenol (ME), isobornyl methacrylate (IM), and isobornyl acrylate (IA) were employed as reactive diluents (RDs) to replace styrene (St) in a maleinated acrylated epoxidized soybean oil (MAESO) resin to produce bio-based thermosetting resins using free radical polymerization. The curing kinetics, gelation times, double bond conversions, thermal-mechanical properties, and thermal stabilities of MAESO-RD resin systems were characterized using DSC, rheometer, FT-IR, DMA, and TGA. The results indicate that all four RD monomers possess high bio-based carbon content (BBC) ranging from 63.2 to 76.9% and low volatilities (less than 7 wt% loss after being held isothermally at 30 °C for 5 h). Moreover, the viscosity of the MAESO-RD systems can be tailored to acceptable levels to fit the requirements for liquid molding techniques. Because of the introduction of RDs to the MAESO resin, the reaction mixtures showed an improved reactivity and an accelerated reaction rate. FT-IR results showed that almost all the C[double bond, length as m-dash]C double bonds within MAESO-RD systems were converted. The glass transition temperatures (T g) of the MAESO-RDs ranged from 44.8 to 100.8 °C, thus extending the range of application. More importantly, the T g of MAESO-ME resin (98.1 °C) was comparable to that of MAESO-St resin (100.8 °C). Overall, this work provided four potential RDs candidates to completely replace styrene in the MAESO resin, with the ME monomer being the most promising one.

11.
ACS Appl Mater Interfaces ; 8(24): 15750-7, 2016 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-27245744

RESUMO

Functional polymers are intelligent materials that can respond to a variety of external stimuli. However, these materials have not yet found widespread real world applications because of the difficulties in fabrication and the limited number of functional building blocks that can be incorporated into a material. Here, we demonstrate a simple route to incorporate three functional building blocks (azobenzene chromophores, liquid crystals, and dynamic covalent bonds) into an epoxy-based liquid crystalline network (LCN), in which an azobenzene-based epoxy monomer is polymerized with an aliphatic dicarboxylic acid to create exchangeable ester bonds that can be thermally activated. All three functional building blocks exhibited good compatibility, and the resulting materials exhibits various photomechanical, shape memory, and self-healing properties because of the azobenzene molecules, liquid crystals, and dynamic ester bonds, respectively.

12.
ACS Appl Mater Interfaces ; 7(10): 5915-26, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25726956

RESUMO

Boron nitride (BN) reinforced polymer nanocomposites have attracted a growing research interest in the microelectronic industry for their uniquely thermal conductive but electrical insulating properties. To overcome the challenges in surface functionalization, in this study, hexagonal boron nitride (h-BN) nanoparticles were noncovalently modified with polydopamine in a solvent-free aqueous condition. The strong π-π interaction between the hexagonal structural BN and aromatic dopamine molecules facilitated 15 wt % polydopamine encapsulating the nanoparticles. High-performance bisphenol E cyanate ester (BECy) was incorporated by homogeneously dispersed h-BN at different loadings and functionalities to investigate their effects on thermo-mechanical, dynamic-mechanical, and dielectric properties, as well as thermal conductivity. Different theoretical and empirical models were successfully applied to predict thermal and dielectric properties of h-BN/BECy nanocomposites. Overall, the prepared h-BN/BECy nanocomposites exhibited outstanding performance in dimensional stability, dynamic-mechanical properties, and thermal conductivity, together with the controllable dielectric property and preserved thermal stability for high-temperature applications.


Assuntos
Materiais Biomiméticos/síntese química , Compostos de Boro/química , Cianatos/química , Indóis/química , Nanocompostos/química , Polímeros/química , Adsorção , Cristalização/métodos , Teste de Materiais , Nanocompostos/ultraestrutura , Tamanho da Partícula , Propriedades de Superfície , Resistência à Tração
13.
ACS Appl Mater Interfaces ; 7(2): 1226-33, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25541678

RESUMO

In this study, a series of biobased polyols were prepared from olive, canola, grape seed, linseed, and castor oil using a novel, solvent/catalyst-free synthetic method. The biobased triglyceride oils were first oxidized into epoxidized vegetable oils with formic acid and hydrogen peroxide, followed by ring-opening reaction with castor oil fatty acid. The molecular structures of the polyols and the resulting polyurethane were characterized. The effects of cross-linking density and the structures of polyols on the thermal, mechanical, and shape memory properties of the polyurethanes were also investigated.


Assuntos
Materiais Biocompatíveis/síntese química , Óleos de Plantas/química , Poliuretanos/síntese química , Materiais Biocompatíveis/química , Fenômenos Biomecânicos , Poliuretanos/química
14.
ChemSusChem ; 8(3): 448-51, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25601572

RESUMO

Molecularly well-defined tackifiers with up to 100 % bio-content were prepared from isosorbide and various cyclic anhydrides. These tackifiers are tacky over a broad temperature range and exhibit high maximum tack (ca. 2000 kPa). Structural modifications shift the temperature at which maximum tack is observed and change the viscosity of the tackifiers.


Assuntos
Adesivos/química , Isossorbida/química , Adesivos/síntese química , Resinas Sintéticas/síntese química , Resinas Sintéticas/química
15.
ACS Appl Mater Interfaces ; 6(21): 19456-64, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25318760

RESUMO

A thermomagnetic processing method was used to produce a biphenyl-based liquid-crystalline epoxy resin (LCER) with oriented liquid-crystalline (LC) domains. The orientation of the LCER was confirmed and quantified using two-dimensional X-ray diffraction. The effect of molecular alignment on the mechanical and thermomechanical properties of the LCER was investigated using nanoindentation and thermomechanical analysis, respectively. The effect of the orientation on the fracture behavior was also examined. The results showed that macroscopic orientation of the LC domains was achieved, resulting in an epoxy network with an anisotropic modulus, hardness, creep behavior, and thermal expansion.

16.
ACS Appl Mater Interfaces ; 6(12): 9349-56, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24841134

RESUMO

Polypropylene is one of the most widely used commercial commodity polymers; among many other applications, it is used for electronic and structural applications. Despite its commercial importance, the hydrophobic nature of polypropylene limits its successful application in some fields, in particular for the preparation of polymer nanocomposites. Here, a facile, plasma-assisted, biomimetic, environmentally friendly method was developed to enhance the interfacial interactions in polymer nanocomposites by modifying the surface of polypropylene. Plasma treated polypropylene was surface-modified with polydopamine (PDA) in an aqueous medium without employing other chemicals. The surface modification strategy used here was based on the easy self-polymerization and strong adhesion characteristics of dopamine (DA) under ambient laboratory conditions. The changes in surface characteristics of polypropylene were investigated using FTIR, TGA, and Raman spectroscopy. Subsequently, the surface modified polypropylene was used as the matrix to prepare SiO2-reinforced polymer nanocomposites. These nanocomposites demonstrated superior properties compared to nanocomposites prepared using pristine polypropylene. This simple, environmentally friendly, green method of modifying polypropylene indicated that polydopamine-functionalized polypropylene is a promising material for various high-performance applications.


Assuntos
Indóis/química , Nanocompostos/química , Polímeros/química , Polipropilenos/química , Biomimética , Interações Hidrofóbicas e Hidrofílicas , Polímeros/síntese química , Polipropilenos/síntese química , Dióxido de Silício/química , Análise Espectral Raman , Propriedades de Superfície , Água/química
17.
ACS Appl Mater Interfaces ; 6(3): 1835-42, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24422718

RESUMO

Multiwalled carbon nanotubes (MWCNTs) were simultaneously fluidized and oxidized with gaseous ozone in a vertical reactor. Two different varieties of MWCNTs were compared to determine the versatility of the treatment and to elucidate the effect of defects on the oxidation behavior of MWCNTs. The extent of oxidation and nature of functional groups introduced on the nanotube surfaces were determined using Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Boehm titration, and structural changes were monitored with Raman spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). After only a few minutes of treatment, nongraphitic impurities were removed from the MWCNTs, and significant levels of oxidation (∼8 atom % O) were achieved with very little damage to the nanotube sidewalls. Short O3 exposure resulted in primarily hydroxyl functionalities, whereas longer exposure led to the formation of mainly carboxylic acid groups. Aliphatic defects present in the commercially produced MWCNTs were found to play an important role in the oxidation mechanism. Because of its ability to remove impurities and to evenly oxidize the sidewalls of nanotubes without the use of any solvents, the fluidized O3 reaction developed in this study was found to be an attractive option for industrial-scale MWCNT functionalization.

18.
ACS Appl Mater Interfaces ; 5(19): 9478-87, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-24070222

RESUMO

The ability to tailor the coefficient of thermal expansion (CTE) of a polymer is essential for mitigating thermal residual stress and reducing microcracks caused by CTE mismatch of different components in electronic applications. This work studies the effect of morphology and thermal expansivity of zirconium tungstate nanoparticles on the rheological, thermo-mechanical, dynamic-mechanical, and dielectric properties of ZrW2O8/epoxy nanocomposites. Three types of ZrW2O8 nanoparticles were synthesized under different hydrothermal conditions and their distinct properties were characterized, including morphology, particle size, aspect ratio, surface area, and CTE. Nanoparticles with a smaller particle size and larger surface area led to a more significant reduction in gel-time and glass transition temperature of the epoxy nanocomposites, while a higher initial viscosity and significant shear thinning behavior was found in prepolymer suspensions containing ZrW2O8 with larger particle sizes and aspect ratios. The thermo- and dynamic-mechanical properties of epoxy-based nanocomposites improved with increasing loadings of the three types of ZrW2O8 nanoparticles. In addition, the introduced ZrW2O8 nanoparticles did not negatively affect the dielectric constant or the breakdown strength of the epoxy resin, suggesting potential applications of ZrW2O8/epoxy nanocomposites in the microelectronic insulation industry.


Assuntos
Nanopartículas Metálicas/química , Nanotecnologia , Compostos de Tungstênio/química , Zircônio/química , Compostos de Epóxi , Nanocompostos , Polímeros/química , Temperatura , Viscosidade
19.
ChemSusChem ; 6(7): 1182-5, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23757328

RESUMO

Benign building blocks: Stereochemically pure diisocyanates were prepared on a multigram scale from succinic anhydride and isosorbide or isomannide. Characterization of polyurethanes that were produced from these diisocyanates revealed low polydispersity, high thermal stability, and stereochemistry-dependent morphology. If biobased succinic anhydride is used, then no stoichiometric petroleum-derived reagents are required in the synthesis of these materials.


Assuntos
Isossorbida/química , Nitrilas/química , Poliuretanos/química , Poliuretanos/síntese química , Temperatura
20.
ACS Appl Mater Interfaces ; 5(5): 1636-42, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23431998

RESUMO

SiO2 coated Fe3O4 submicrometer spherical particles (a conducting core/insulating shell configuration) are fabricated using a hydrothermal method and are loaded at 10 and 20 vol % into a bisphenol E cyanate ester matrix for synthesis of multifunctional composites. The dielectric constant of the resulting composites is found to be enhanced over a wide frequency and temperature range while the low dielectric loss tangent of the neat cyanate ester polymer is largely preserved up to 160 °C due to the insulating SiO2 coating on individual conductive Fe3O4 submicrometer spheres. These composites also demonstrate high dielectric breakdown strengths at room temperature. Dynamic mechanical analysis indicates that the storage modulus of the composite with a 20 vol % filler loading is twice as high as that of neat resin, but the glass transition temperature considerably decreases with increasing filler content. Magnetic measurements reveal a large saturation magnetization and negligibly low coercivity and remanent magnetization in these composites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA