Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Basic Microbiol ; : e2400345, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39205430

RESUMO

One of the most talked about issues of the 21st century is climate change, as it affects not just our health but also forestry, agriculture, biodiversity, the ecosystem, and the energy supply. Greenhouse gases are the primary cause of climate change, having dramatic effects on the environment. Climate change has an impact on the function and composition of the terrestrial microbial community both directly and indirectly. Changes in the prevailing climatic conditions brought about by climate change will lead to modifications in plant physiology, root exudation, signal alteration, and the quantity, makeup, and diversity of soil microbial communities. Microbiological activity is very crucial in organic production systems due to the organic origin of microorganisms. Microbes that benefit crop plants are known as plant growth-promoting microorganisms. Thus, the effects of climate change on the environment also have an impact on the abilities of beneficial bacteria to support plant growth, health, and root colonization. In this review, we have covered the effects of temperature, precipitation, drought, and CO2 on plant-microbe interactions, as well as some physiological implications of these changes. Additionally, this paper highlights the ways in which bacteria in plants' rhizosphere react to the dominant climatic conditions in the soil environment. The goal of this study is to analyze the effects of climate change on plant-microbe interactions.

2.
Microb Ecol ; 86(1): 1-24, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35604432

RESUMO

Several fungi act as parasites for crops causing huge annual crop losses at both pre- and post-harvest stages. For years, chemical fungicides were the solution; however, their wide use has caused environmental contamination and human health problems. For this reason, the use of biofungicides has been in practice as a green solution against fungal phytopathogens. In the context of a more sustainable agriculture, microbial biofungicides have the largest share among the commercial biocontrol products that are available in the market. Precisely, the genus Bacillus has been largely studied for the management of plant pathogenic fungi because they offer a chemically diverse arsenal of antifungal secondary metabolites, which have spawned a heightened industrial engrossment of it as a biopesticide. In this sense, it is indispensable to know the wide arsenal that Bacillus genus has to apply these products for sustainable agriculture. Having this idea in our minds, in this review, secondary metabolites from Bacillus having antifungal activity are chemically and structurally described giving details of their action against several phytopathogens. Knowing the current status of Bacillus secreted antifungals is the base for the goal to apply these in agriculture and it is addressed in depth in the second part of this review.


Assuntos
Antifúngicos , Bacillus , Microbiologia Industrial , Controle Biológico de Vetores , Doenças das Plantas , Humanos , Agricultura/métodos , Agricultura/tendências , Antifúngicos/metabolismo , Bacillus/genética , Bacillus/metabolismo , Fungicidas Industriais/metabolismo , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Produtos Agrícolas/microbiologia , Controle Biológico de Vetores/métodos , Controle Biológico de Vetores/tendências , Família Multigênica/genética
3.
Toxicol Mech Methods ; 33(4): 293-306, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36154553

RESUMO

Nuclear receptors (NRs) are ligand-modulated transcription factors that regulate multiple physiological functions in our body. Many NRs in their unliganded state are localized in the cytoplasm. The ligand-inducible nuclear translocation of NRs provides a valuable tool for studying the NR-ligand interactions and their downstream effects. The translocation response of NRs can be studied irrespective of the nature of the interacting ligand (agonist, antagonist, or a small molecule modulator). These nuclear translocation studies offer an advantage over promoter-reporter-based transcription assays where transcription response is observed only with the activating hormones or agonistic ligands. Globally, milk serves as a major dietary source. However, suspected presence of endocrine/metabolism-disrupting chemicals like bisphenols, parabens, organochlorine pesticides, carbamates, non-steroidal anti-inflammatory drugs, chloramphenicol, brominated flame retardants, etc. has been reported. Considering that these chemicals may impart serious developmental and metabolism-related health concerns, it is essential to develop assays suitable for the detection of xenobiotics present at differing levels in milk. Since milk samples cannot be used directly on cultured cells or for microscopy, a combination of screening strategies has been developed herein based on the revelation that i) lipophilic NR ligands can be successfully retrieved in milk-fat; ii) milk-fat treatment of cells is compatible with live-cell imaging studies; and finally, iii) treatment of cells with xenobiotics-spiked and normal milk derived fat provides a visual and quantifiable response of NR translocation in living cells. Utilizing a milk-fat extraction method and Green Fluorescent Protein (GFP) tagged NRs expressed in cultured mammalian cells, followed by an assessment of NR response proved to be an effective approach for screening xenobiotics present in milk samples.HighlightsDiverse endocrine and metabolism-disrupting chemicals are suspected to contaminate milk.Nuclear receptors serve as 'xenosensors' for assessing the presence of xenobiotics in milk.Nuclear import of steroid receptors with (ant)agonist can be examined in live cells.Lipophilic xenobiotics are extracted and observed enriched in milk-fat fraction.A comprehensive cell-based protocol aids in the detection of xenobiotics in milk.


Assuntos
Disruptores Endócrinos , Receptores de Esteroides , Animais , Leite/química , Leite/metabolismo , Xenobióticos/toxicidade , Ligantes , Receptores Citoplasmáticos e Nucleares , Receptores de Esteroides/metabolismo , Disruptores Endócrinos/toxicidade , Disruptores Endócrinos/análise , Mamíferos/metabolismo
4.
J Appl Microbiol ; 132(3): 1597-1615, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34724298

RESUMO

Soil microbes promote plant growth through several mechanisms such as secretion of chemical compounds including plant growth hormones. Among the phytohormones, auxins, ethylene, cytokinins, abscisic acid and gibberellins are the best understood compounds. Gibberellins were first isolated in 1935 from the fungus Gibberella fujikuroi and are synthesized by several soil microbes. The effect of gibberellins on plant growth and development has been studied, as has the biosynthesis pathways, enzymes, genes and their regulation. This review revisits the history of gibberellin research highlighting microbial gibberellins and their effects on plant health with an emphasis on the early discoveries and current advances that can find vital applications in agricultural practices.


Assuntos
Giberelinas , Reguladores de Crescimento de Plantas , Agricultura , Produtos Agrícolas/metabolismo , Citocininas/metabolismo , Giberelinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo
5.
Environ Geochem Health ; 44(1): 149-177, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34027568

RESUMO

Organochlorine pesticides (OCPs) are ubiquitous environmental contaminants widely used all over the world. These chlorinated hydrocarbons are toxic and often cause detrimental health effects because of their long shelf life and bioaccumulation in the adipose tissues of primates. OCP exposure to humans occurs through skin, inhalation and contaminated foods including milk and dairy products, whereas developing fetus and neonates are exposed through placental transfer and lactation, respectively. In 1960s, OCPs were banned in most developed countries, but because they are cheap and easily available, they are still widely used in most third world countries. The overuse or misuse of OCPs has been rising continuously which pose threats to environmental and human health. This review reports the comparative occurrence of OCPs in human and bovine milk samples around the globe and portrays the negative impacts encountered through the long history of OCP use.


Assuntos
Hidrocarbonetos Clorados , Praguicidas , Animais , Feminino , Humanos , Hidrocarbonetos Clorados/análise , Recém-Nascido , Leite/química , Praguicidas/análise , Placenta , Gravidez
6.
Appl Microbiol Biotechnol ; 104(3): 1013-1034, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31858191

RESUMO

The whole organisms can be packaged as biopesticides, but secondary metabolites secreted by microorganisms can also have a wide range of biological activities that either protect the plant against pests and pathogens or act as plant growth promotors which can be beneficial for the agricultural crops. In this review, we have compiled information about the most important secondary metabolites of three important bacterial genera currently used in agriculture pest and disease management.


Assuntos
Bactérias/metabolismo , Agentes de Controle Biológico , Metabolismo Secundário , Agricultura/métodos , Bacillus/metabolismo , Produtos Agrícolas , Controle Biológico de Vetores , Pseudomonas/metabolismo , Serratia/metabolismo
7.
Appl Microbiol Biotechnol ; 104(20): 8549-8565, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32918584

RESUMO

To maintain the world population demand, a sustainable agriculture is needed. Since current global vision is more friendly with the environment, eco-friendly alternatives are desirable. In this sense, plant growth-promoting rhizobacteria could be the choice for the management of soil-borne diseases of crop plants. These rhizobacteria secrete chemical compounds which act as phytohormones. Indole-3-acetic acid (IAA) is the most common plant hormone of the auxin class which regulates various processes of plant growth. IAA compound, in which structure can be found a carboxylic acid attached through a methylene group to the C-3 position of an indole ring, is produced both by plants and microorganisms. Plant growth-promoting rhizobacteria and fungi secrete IAA to promote the plant growth. In this review, IAA production and mechanisms of action by bacteria and fungi along with the metabolic pathways evolved in the IAA secretion and commercial prospects are revised.Key points• Many microorganisms produce auxins which help the plant growth promotion.• These auxins improve the plant growth by several mechanisms.• The auxins are produced through different mechanisms.


Assuntos
Ácidos Indolacéticos , Reguladores de Crescimento de Plantas , Agricultura , Desenvolvimento Vegetal , Plantas
8.
Behav Brain Funct ; 15(1): 9, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31064381

RESUMO

BACKGROUND: Bisphenol A (BPA), a major endocrine disruptor and a xenobiotic compound is used abundantly in the production of polycarbonate plastics and epoxy resins. Human exposure to this compound is primarily via its leaching from the protective internal epoxy resin coatings of containers into the food and beverages. In addition, the plastics used in dental prostheses and sealants also contain considerable amount of BPA and have a high risk of human exposure. Since it is a well-known endocrine disruptor and closely mimics the molecular structure of human estrogen thereby impairing learning and memory. Withania somnifera (Ws), commonly known as Ashwagandha is known for its varied therapeutic uses in Ayurvedic system of medicine. The present study was undertaken to demonstrate the impairment induced by BPA on the spatial learning, working memory and its alleviation by Ws in Swiss albino mice. The study was conducted on thirty Swiss albino mice, randomly distributed among three groups: control, BPA and BPA + Ws. The behavioral recovery after treatment with Ws was investigated using the Y-maize and Morris water maize test. Whereas, for the estimation of recovery of NMDA receptor which is related to learning and memory in hippocampus region by western blot and immunohistochemistry. Furthermore, the oxidative stress and antioxidant level was assessed by biochemical tests like MDA, SOD and catalase. RESULTS: The study revealed that administration of Ws alleviated the behavioral deficits induced by BPA. Alongside, Ws treatment reinstated the number of NMDA receptors in hippocampus region and showed anti-oxidative property while ameliorating the endogenous anti-oxidant level in the brain. CONCLUSION: These findings suggest that Ws significantly ameliorates the level of BPA intoxicated oxidative stress thereby potentially treating cognitive dysfunction which acts as the primary symptom in a number of neurodegenerative diseases.


Assuntos
Compostos Benzidrílicos/efeitos adversos , Fármacos Neuroprotetores/farmacologia , Fenóis/efeitos adversos , Extratos Vegetais/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Transtornos Cognitivos/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Camundongos , Receptores de N-Metil-D-Aspartato , Aprendizagem Espacial/efeitos dos fármacos , Withania/metabolismo
9.
Appl Microbiol Biotechnol ; 103(23-24): 9287-9303, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31707442

RESUMO

Synthetic chemical pesticides have been used for many years to increase the yield of agricultural crops. However, in the future, this approach is likely to be limited due to negative impacts on human health and the environment. Therefore, studies of the secondary metabolites produced by agriculturally important microorganisms have an important role in improving the quality of the crops entering the human food chain. In this review, we have compiled information about the most important secondary metabolites of fungal species currently used in agriculture pest and disease management.


Assuntos
Anti-Infecciosos/metabolismo , Agentes de Controle Biológico/metabolismo , Produtos Agrícolas/microbiologia , Fungos/metabolismo , Metabolismo Secundário , Agricultura , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Agentes de Controle Biológico/química , Agentes de Controle Biológico/farmacologia , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/crescimento & desenvolvimento , Fungos/classificação , Controle Biológico de Vetores , Praguicidas/química , Praguicidas/metabolismo , Praguicidas/farmacologia
10.
Appl Microbiol Biotechnol ; 98(2): 533-44, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24276619

RESUMO

Recent shift in trends of agricultural practices from application of synthetic fertilizers and pesticides to organic farming has brought into focus the use of microorganisms that carryout analogous function. Trichoderma spp. is one of the most popular genera of fungi commercially available as a plant growth promoting fungus (PGPF) and biological control agent. Exploitation of the diverse nature of secondary metabolites produced by different species of Trichoderma augments their extensive utility in agriculture and related industries. As a result, Trichoderma has achieved significant success as a powerful biocontrol agent at global level. The endorsement of Trichoderma spp. by scientific community is based on the understanding of its mechanisms of action against a large set of fungal, bacterial and in certain cases viral infections. However, it is still an agnostic view that there could be any single major mode of operation, although it is argued that all mechanisms operate simultaneously in a synchronized fashion. The central idea behind this review article is to emphasize the potentiality of applications of target specific secondary metabolites of Trichoderma for controlling phytopathogens as a substitute of commercially available whole organism formulations. With the aim to this point, we have compiled an inclusive list of secondary metabolites produced by different species of Trichoderma and their applications in diverse areas with the major emphasis on agriculture. Outlining the importance and diverse activities of secondary metabolites of Trichoderma besides its relevance to agriculture would generate greater understanding of their other important and beneficial applications apart from target specific biopesticides.


Assuntos
Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Controle Biológico de Vetores/métodos , Metabolismo Secundário , Trichoderma/metabolismo
11.
Plant Physiol Biochem ; 206: 108272, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38100892

RESUMO

Lipid peroxidation (LPO) is a complex process that, depending on the context, can either result in oxidative injury or promote redox homeostasis. LPO is a series of reactions in which polyunsaturated fatty acids are attacked by free radicals that result in the synthesis of lipid peroxides. LPO can alter membrane fluidity and operation and produce secondary products that amplify oxidative stress. LPO can activate cellular signaling pathways that promote antioxidant defense mechanisms that provide oxidative stress protection by elevating antioxidant enzyme action potentials. Enzymatic and nonenzymatic mechanisms tightly regulate LPO to prevent excessive LPO and its adverse consequences. This article emphasizes the dual nature of LPO as a mechanism that can both damage cells and regulate redox homeostasis. In addition, it also highlights the major enzymatic and nonenzymatic mechanisms that tightly regulate LPO to prevent excessive oxidative damage. More importantly, it emphasizes the importance of understanding the cellular and biochemical complexity of LPO for developing strategies targeting this process for efficient management of plant stress.


Assuntos
Antioxidantes , Estresse Oxidativo , Peroxidação de Lipídeos/fisiologia , Antioxidantes/metabolismo , Oxirredução , Plantas/metabolismo , Homeostase , Espécies Reativas de Oxigênio/metabolismo
12.
Environ Sci Pollut Res Int ; 31(19): 27653-27678, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38598151

RESUMO

Mine tailings are the discarded materials resulting from mining processes after minerals have been extracted. They consist of leftover mineral fragments, excavated land masses, and disrupted ecosystems. The uncontrolled handling or discharge of tailings from abandoned mine lands (AMLs) poses a threat to the surrounding environment. Numerous untreated mine tailings have been abandoned globally, necessitating immediate reclamation and restoration efforts. The limited feasibility of conventional reclamation methods, such as cost and acceptability, presents challenges in reclaiming tailings around AMLs. This study focuses on phytorestoration as a sustainable method for treating mine tailings. Phytorestoration utilizes existing native plants on the mine sites while applying advanced principles of environmental biotechnology. These approaches can remediate toxic elements and simultaneously improve soil quality. The current study provides a global overview of phytorestoration methods, emphasizing the specifics of mine tailings and the research on native plant species to enhance restoration ecosystem services.


Assuntos
Mineração , Plantas , Solo , Biodegradação Ambiental , Ecossistema , Poluentes do Solo
13.
Microorganisms ; 11(12)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38138074

RESUMO

(This article belongs to the Special Issue Biological Control of the Plant Pathogens [...].

14.
Heliyon ; 9(11): e22148, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38045140

RESUMO

The present study was carried out in a pot experiment to examine the bioefficacy of three biocontrol agents, viz., Trichoderma viride, Bacillus subtilis, and Pseudomonas fluorescens, either alone or in consortium, on plant growth promotion and activation of defense responses in potato against the early blight pathogen Alternaria solani. The results demonstrate significant enhancement in growth parameters in plants bioprimed with the triple-microbe consortium compared to other treatments. In potato, the disease incidence percentage was significantly reduced in plants treated with the triple-microbe consortium compared to untreated control plants challenged with A. solani. Potato tubers treated with the consortium and challenged with pathogen showed significant activation of defense-related enzymes such as peroxidase (PO) at 96 h after pathogen inoculation (hapi) while, both polyphenol oxidase (PPO), and phenylalanine ammonia-lyase (PAL) at 72 hapi, compared to the individual and dual microbial consortia-treated plants. The expression of antioxidant enzymes like superoxide dismutase (SOD) and catalase (CAT) and the accumulation of pathogenesis-related proteins such as chitinase and ß-1,3-glucanase were observed to be highest at 72 hapi in the triple microbe consortium as compared to other treatments. HPLC analysis revealed significant induction in polyphenolic compounds in triple-consortium bioprimed plants compared to the control at 72 hapi. Histochemical analysis of hydrogen peroxide (H2O2) clearly showed maximum accumulation of H2O2 in pathogen-inoculated control plants, while the lowest was observed in triple-microbe consortium at 72 hapi. The findings of this study suggest that biopriming with a microbial consortium improved plant growth and triggered defense responses against A. solani through the induction of systemic resistance via modulation of the phenylpropanoid pathway and antioxidative network.

15.
ACS Chem Neurosci ; 14(17): 3077-3087, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37579290

RESUMO

Oxidative stress and mitochondrial dysfunction are leading mechanisms that play a crucial role in the progression of Parkinson's disease (PD). Tinospora cordifolia shows a wide range of biological activities including immunomodulatory, antimicrobial, antioxidant, and anti-inflammatory properties. This study explored the neuroprotective activities of T. cordifolia ethanolic extract (TCE) against Rotenone (ROT)-intoxicated Parkinsonian mice. Four experimental groups of mice were formed: control, ROT (2 mg/kg body wt, subcutaneously), TCE (200 mg/kg body wt, oral) + ROT, and TCE only. Mice were pretreated with TCE for a week and then simultaneously injected with ROT for 35 days. Following ROT-intoxication, motor activities, antioxidative potential, and mitochondrial dysfunction were analyzed. Decrease in the activity of the mitochondrial electron transport chain (mETC) complex, loss of mitochondrial membrane potential (Ψm), increase in Bax/Bcl-2 (B-cell lymphoma 2) ratio, and caspase-3 expression are observed in the ROT-intoxicated mice group. Our results further showed ROT-induced reactive oxygen species (ROS)-mediated alpha-synuclein (α-syn) accumulation and mitochondrial dysfunction. However, pre- and cotreatment with TCE along with ROT-intoxication significantly reduced α-syn aggregation and improved mitochondrial functioning in cells by altering mitochondrial potential and increasing mETC activity. TCE also decreases the Bax/Bcl-2 ratio and also the expression of caspase-3, thus reducing apoptosis of the cell. Altogether, TCE is effective in protecting neurons from rotenone-induced cytotoxicity in the Parkinsonian mouse model by modulating oxidative stress, ultimately reducing mitochondrial dysfunction and cell death.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Tinospora , Camundongos , Animais , Doença de Parkinson/metabolismo , Rotenona/farmacologia , Fármacos Neuroprotetores/farmacologia , Tinospora/metabolismo , Caspase 3/metabolismo , Proteína X Associada a bcl-2/metabolismo , Estresse Oxidativo , Antioxidantes/farmacologia , Mitocôndrias/metabolismo
16.
Heliyon ; 9(1): e12953, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36711264

RESUMO

Bio-inoculation involves the association of plant with some beneficial microorganisms, and among these microbiotas, those bacteria which can promote plant growth and development are known as Plant Growth Promoting Rhizobacteria (PGPR). It can help a plant directly or indirectly, which includes root development, biological nitrogen (N2) fixation, stress tolerance, cell division and elongation, solubilization of Zinc, Phosphate, Potassium, soil health improvement and many more. PGPR have gained attention as it can be used as biofertilizers and helpful in bioremediation techniques, which in turn can reduce the chemical dependency in agriculture. PGPR mediated plant growth and stress management is developed by the virtue of the interaction of plant and microbial signalling pathways. On the other hand, environmental stresses are something to which a plant is always exposed irrespective of other factors. The present review is all about the better understanding of the convergence strategies of these signalling molecules and the ambiguities of signalling activities occurring in the host due to the interaction with PGPR under environmental stressed conditions.

17.
Heliyon ; 9(3): e13825, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36873502

RESUMO

Plant diseases are still the main problem for the reduction in crop yield and a threat to global food security. Additionally, excessive usage of chemical inputs such as pesticides and fungicides to control plant diseases have created another serious problem for human and environmental health. In view of this, the application of plant growth-promoting rhizobacteria (PGPR) for controlling plant disease incidences has been identified as an eco-friendly approach for coping with the food security issue. In this review, we have identified different ways by which PGPRs are capable of reducing phytopathogenic infestations and enhancing crop yield. PGPR suppresses plant diseases, both directly and indirectly, mediated by microbial metabolites and signaling components. Microbial synthesized anti-pathogenic metabolites such as siderophores, antibiotics, lytic enzymes, hydrogen cyanide, and several others act directly on phytopathogens. The indirect mechanisms of reducing plant disease infestation are caused by the stimulation of plant immune responses known as initiation of systemic resistance (ISR) which is mediated by triggering plant immune responses elicited through pathogen-associated molecular patterns (PAMPs). The ISR triggered in the infected region of the plant leads to the development of systemic acquired resistance (SAR) throughout the plant making the plant resistant to a wide range of pathogens. A number of PGPRs including Pseudomonas and Bacillus genera have proven their ability to stimulate ISR. However, there are still some challenges in the large-scale application and acceptance of PGPR for pest and disease management. Further, we discuss the newly formulated PGPR inoculants possessing both plant growth-promoting activities and plant disease suppression ability for a holistic approach to sustaining plant health and enhancing crop productivity.

18.
Microorganisms ; 10(11)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36363752

RESUMO

The bacterial canker disease of tomato caused by Clavibacter michiganensis subsp. michiganensis (Cmm) has been reported to adversely affect the tomato cultivation in the NE hilly regions of India. Defense inducers such as salicylic acid (SA), isonicotinic acid (INA), benzothiadiazole (BTH) and lysozyme were used as prophylactic and curative sprays at different concentrations to test their efficacy in inducing resistance in tomato plants against Cmm under protected conditions. The induced resistance was studied through the alteration in the activities of oxidative stress marker enzymes (PAL, PO, PPO, TPC and PR-2 protein), hydrogen peroxide formation in leaf tissues and lignin accumulation in stem tissues, as well as through the reduction in disease severity under glasshouse conditions. The results of the present study revealed that the enzymatic activity, hydrogen peroxide formation and lignin production were significantly higher in the BTH (500 ppm)-treated leaves than in those observed in the control. The lowest disease incidence was recorded when BTH was applied as a prophylactic spray (27.88%) in comparison to being applied as a curative spray (53.62%), thereby suggesting that a defense inducer, BTH, shows antibacterial activity against Cmm, reduces disease incidence severity and induces defense responses in the tomato plant.

19.
Heliyon ; 8(3): e09094, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35309390

RESUMO

Phenolic compounds are plant secondary metabolites that play a vital role in plant resistance. They are mainly synthetized from the amino acid L-phenylalanine, which is converted to trans-cinnamic acid in a series of biochemical reactions. These compounds take part in the regulation of seed germination and cooperate in regulating the growth of plants, also taking part in defense responses during infection, UV exposure, injuries, and heavy metal stress. The aim of this review is to discuss the role of phenolic compounds in the interactions of plants with various stress factors, both biotic and abiotic with special attention to their antioxidant properties. Therefore, understanding the biochemical potential of the phenylpropanoid derivatives would be beneficial in sustaining the metabolic processes used by plants to thrive and endure under adverse conditions.

20.
Front Plant Sci ; 13: 883970, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340341

RESUMO

Complete and balanced nutrition has always been the first line of plant defense due to the direct involvement of mineral elements in plant protection. Mineral elements affect plant health directly by modulating the activity of redox enzymes or improving the plant vigor indirectly by altering root exudates, and changing microflora population dynamics, rhizosphere soil nutrient content, pH fluctuation, lignin deposition, and phytoalexin biosynthesis. Nitrogen (N) is one of the most important macronutrients having a significant impact on the host-pathogen axis. N negatively affects the plant's physical defense along with the production of antimicrobial compounds, but it significantly alleviates defense-related enzyme levels that can eventually assist in systemic resistance. Potassium (K) is an essential plant nutrient, when it is present in adequate concentration, it can certainly increase the plant's polyphenolic concentrations, which play a critical role in the defense mechanism. Although no distinguished role of phosphorus (P) is observed in plant disease resistance, a high P content may increase the plant's susceptibility toward the invader. Manganese (Mn) is one of the most important micronutrients, which have a vital effect on photosynthesis, lignin biosynthesis, and other plant metabolic functions. Zinc (Zn) is a part of enzymes that are involved in auxin synthesis, infectivity, phytotoxin, and mycotoxin production in pathogenic microorganisms. Similarly, many other nutrients also have variable effects on enhancing or decreasing the host susceptibility toward disease onset and progression, thereby making integrative plant nutrition an indispensable component of sustainable agriculture. However, there are still many factors influencing the triple interaction of host-pathogen-mineral elements, which are not yet unraveled. Thereby, the present review has summarized the recent progress regarding the use of macro- and micronutrients in sustainable agriculture and their role in plant disease resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA