Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Cancer ; 143(9): 2092-2104, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29524224

RESUMO

Resistance of solid tumors to chemo- and radiotherapy remains a major obstacle in anti-cancer treatment. Herein, the membrane protein caveolin-1 (CAV1) came into focus as it is highly expressed in many tumors and high CAV1 levels were correlated with tumor progression, invasion and metastasis, and thus a worse clinical outcome. Increasing evidence further indicates that the heterogeneous tumor microenvironment, also known as the tumor stroma, contributes to therapy resistance resulting in poor clinical outcome. Again, CAV1 seems to play an important role in modulating tumor host interactions by promoting tumor growth, metastasis, therapy resistance and cell survival. However, the mechanisms driving stroma-mediated tumor growth and radiation resistance remain to be clarified. Understanding these interactions and thus, targeting CAV1 may offer a novel strategy for preventing cancer therapy resistance and improving clinical outcomes. In this review, we will summarize the resistance-promoting effects of CAV1 in tumors, and emphasize its role in the tumor-stroma communication as well as the resulting malignant phenotype of epithelial tumors.


Assuntos
Antineoplásicos/uso terapêutico , Caveolina 1/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Humanos , Neoplasias/genética
2.
Front Oncol ; 12: 802482, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35155239

RESUMO

In prostate cancer (PCa), a characteristic stromal-epithelial redistribution of the membrane protein caveolin 1 (CAV1) occurs upon tumor progression, where a gain of CAV1 in the malignant epithelial cells is accompanied by a loss of CAV1 in the tumor stroma, both facts that were correlated with higher Gleason scores, poor prognosis, and pronounced resistance to therapy particularly to radiotherapy (RT). However, it needs to be clarified whether inhibiting the CAV1 gain in the malignant prostate epithelium or limiting the loss of stromal CAV1 would be the better choice for improving PCa therapy, particularly for improving the response to RT; or whether ideally both processes need to be targeted. Concerning the first assumption, we investigated the RT response of LNCaP PCa cells following overexpression of different CAV1 mutants. While CAV1 overexpression generally caused an increased epithelial-to-mesenchymal phenotype in respective LNCaP cells, effects that were accompanied by increasing levels of the 5'-AMP-activated protein kinase (AMPK), a master regulator of cellular homeostasis, only wildtype CAV1 was able to increase the three-dimensional growth of LNCaP spheroids, particularly following RT. Both effects could be limited by an additional treatment with the SRC inhibitor dasatinib, finally resulting in radiosensitization. Using co-cultured (CAV1-expressing) fibroblasts as an approximation to the in vivo situation of early PCa it could be revealed that RT itself caused an activated, more tumor-promoting phenotype of stromal fibroblats with an increased an increased metabolic potential, that could not be limited by combined dasatinib treatment. Thus, targeting fibroblasts and/or limiting fibroblast activation, potentially by limiting the loss of stromal CAV1 seems to be absolute for inhibiting the resistance-promoting CAV1-dependent signals of the tumor stroma.

3.
Cell Death Dis ; 11(4): 228, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32273493

RESUMO

The integral membrane protein caveolin-1 (CAV1) plays a central role in radioresistance-mediating tumor-stroma interactions of advanced prostate cancer (PCa). Among the tumor-stroma, endothelial cells (EC) evolved as critical determinants of the radiation response. CAV1 deficiency in angiogenic EC was already shown to account for increased apoptosis rates of irradiated EC. This study explores the potential impact of differential CAV1 levels in EC on the acid sphingomyelinase (ASMase)/ceramide pathway as a key player in the regulation of EC apoptosis upon irradiation and cancer cell radioresistance. Enhanced apoptosis sensitivity of CAV1-deficient EC was associated with increased ASMase activity, ceramide generation, formation of large lipid platforms, and finally an altered p38 mitogen-activated protein kinase (MAPK)/heat-shock protein 27 (HSP27)/AKT (protein kinase B, PKB) signaling. CAV1-deficient EC increased the growth delay of LNCaP and PC3 PCa cells upon radiation treatment in direct 3D spheroid co-cultures. Exogenous C6 and C16 ceramide treatment in parallel increased the growth delay of PCa spheroids and induced PCa cell apoptosis. Analysis of the respective ceramide species in PCa cells with increased CAV1 levels like those typically found in radio-resistant advanced prostate tumors further revealed an upregulation of unsaturated C24:1 ceramide that might scavenge the effects of EC-derived apoptosis-inducing C16 ceramide. Higher ASMase as well as ceramide levels could be confirmed by immunohistochemistry in human advanced prostate cancer specimen bearing characteristic CAV1 tumor-stroma alterations. Conclusively, CAV1 critically regulates the generation of ceramide-dependent (re-)organization of the plasma membrane that in turn affects the radiation response of EC and adjacent PCa cells. Understanding the CAV1-dependent crosstalk between tumor cells and the host-derived tumor microvasculature and its impact on radiosensitivity may allow to define a rational strategy for overcoming tumor radiation resistance improving clinical outcomes by targeting CAV1.


Assuntos
Caveolina 1/metabolismo , Ceramidas/metabolismo , Células Endoteliais/efeitos da radiação , Neoplasias da Próstata/patologia , Neoplasias da Próstata/radioterapia , Esfingomielina Fosfodiesterase/metabolismo , Células Estromais/patologia , Caveolina 1/biossíntese , Caveolina 1/deficiência , Comunicação Celular/fisiologia , Comunicação Celular/efeitos da radiação , Linhagem Celular Tumoral , Ceramidas/biossíntese , Ceramidas/farmacologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos da radiação , Masculino , Células PC-3 , Neoplasias da Próstata/metabolismo , Tolerância a Radiação , Transdução de Sinais , Células Estromais/metabolismo , Microambiente Tumoral
4.
J Clin Med ; 8(3)2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30871022

RESUMO

Tumour resistance to chemo- and radiotherapy, as well as molecularly targeted therapies, limits the effectiveness of current cancer treatments. We previously reported that the radiation response of human prostate tumours is critically regulated by CAV1 expression in stromal fibroblasts and that loss of stromal CAV1 expression in advanced tumour stages may contribute to tumour radiotherapy resistance. Here we investigated whether fibroblast secreted anti-apoptotic proteins could induce radiation resistance of prostate cancer cells in a CAV1-dependent manner and identified TRIAP1 (TP53 Regulated Inhibitor of Apoptosis 1) as a resistance-promoting CAV1-dependent factor. TRIAP1 expression and secretion was significantly higher in CAV1-deficient fibroblasts and secreted TRIAP1 was able to induce radiation resistance of PC3 and LNCaP prostate cancer cells in vitro, as well as of PC3 prostate xenografts derived from co-implantation of PC3 cells with TRIAP1-expressing fibroblasts in vivo. Immunohistochemical analyses of irradiated PC3 xenograft tumours, as well as of human prostate tissue specimen, confirmed that the characteristic alterations in stromal-epithelial CAV1 expression were accompanied by increased TRIAP1 levels after radiation in xenograft tumours and within advanced prostate cancer tissues, potentially mediating resistance to radiation treatment. In conclusion, we have determined the role of CAV1 alterations potentially induced by the CAV1-deficient, and more reactive, stroma in radio sensitivity of prostate carcinoma at a molecular level. We suggest that blocking TRIAP1 activity and thus avoiding drug resistance may offer a promising drug development strategy for inhibiting resistance-promoting CAV1-dependent signals.

5.
Antioxid Redox Signal ; 30(2): 213-231, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29463096

RESUMO

Aims: Radiation-induced normal tissue toxicity often precludes the application of curative radiation doses. Here we investigated the therapeutic potential of chemokine C-C motif ligand 2 (Ccl2) signaling inhibition to protect normal lung tissue from radiotherapy (RT)-induced injury. Results: RT-induced vascular dysfunction and associated adverse effects can be efficiently antagonized by inhibition of Ccl2 signaling using either the selective Ccl2 inhibitor bindarit (BIN) or mice deficient for the main Ccl2 receptor CCR2 (KO). BIN-treatment efficiently counteracted the RT-induced expression of Ccl2, normalized endothelial cell (EC) morphology and vascular function, and limited lung inflammation and metastasis early after irradiation (acute effects). A similar protection of the vascular compartment was detected by loss of Ccl2 signaling in lungs of CCR2-KO mice. Long-term Ccl2 signaling inhibition also significantly limited EC loss and accompanied fibrosis progression as adverse late effect. With respect to the human situation, we further confirmed that Ccl2 secreted by RT-induced senescent epithelial cells resulted in the activation of normally quiescent but DNA-damaged EC finally leading to EC loss in ex vivo cultured human normal lung tissue. Innovation: Abrogation of certain aspects of the secretome of irradiated resident lung cells, in particular signaling inhibition of the senescence-associated secretory phenotype-factor Ccl2 secreted predominantly by RT-induced senescent epithelial cells, resulted in protection of the endothelial compartment. Conclusions: Radioprotection of the normal tissue via Ccl2 signaling inhibition without simultaneous protection or preferable radiosensitization of tumor tissue might improve local tumor control and survival, because higher doses of radiation could be used.


Assuntos
Quimiocina CCL2/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/efeitos da radiação , Endotélio Vascular/metabolismo , Endotélio Vascular/efeitos da radiação , Pulmão/metabolismo , Transdução de Sinais/efeitos da radiação , Animais , Biomarcadores , Biópsia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos da radiação , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Senescência Celular/efeitos da radiação , Quimiocina CCL2/antagonistas & inibidores , Modelos Animais de Doenças , Humanos , Pulmão/patologia , Pulmão/efeitos da radiação , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/radioterapia , Camundongos , Camundongos Knockout , Pneumonia/etiologia , Pneumonia/metabolismo , Pneumonia/patologia , Substâncias Protetoras/farmacologia , Ligação Proteica , Lesões por Radiação/metabolismo , Lesões por Radiação/patologia , Receptores CCR2/genética , Receptores CCR2/metabolismo , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Mucosa Respiratória/efeitos da radiação
6.
Sci Rep ; 7: 41138, 2017 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28112237

RESUMO

Despite good treatment results in localized prostate tumors, advanced disease stages usually have a pronounced resistance to chemotherapy and radiotherapy. The membrane protein caveolin-1 (Cav1) functions here as an important oncogene. Therefore we examined the impact of stromal Cav1 expression for tumor growth and sensitivity to ionizing radiation (IR). Silencing of Cav1 expression in PC3 cells resulted in increased tumor growth and a reduced growth delay after IR when compared to tumors generated by Cav1-expressing PC3 cells. The increased radiation resistance was associated with increasing amounts of reactive tumor stroma and a Cav1 re-expression in the malignant epithelial cells. Mimicking the human situation these results were confirmed using co-implantation of Cav1-silenced PC3 cells with Cav1-silenced or Cav1-expressing fibroblasts. Immunohistochemically analysis of irradiated tumors as well as human prostate tissue specimen confirmed that alterations in stromal-epithelial Cav1 expressions were accompanied by a more reactive Cav1-reduced tumor stroma after radiation and within advanced prostate cancer tissues which potentially mediates the resistance to radiation treatment. Conclusively, the radiation response of human prostate tumors is critically regulated by Cav1 expression in stromal fibroblasts. Loss of stromal Cav1 expression in advanced tumor stages may thus contribute to resistance of these tumors to radiotherapy.


Assuntos
Caveolina 1/metabolismo , Caveolina 1/efeitos da radiação , Progressão da Doença , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Neoplasias da Próstata/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Células Epiteliais/metabolismo , Células Epiteliais/efeitos da radiação , Xenoenxertos , Humanos , Masculino , Camundongos , Células Estromais/metabolismo , Células Estromais/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA