Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cell ; 177(7): 1915-1932.e16, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31130381

RESUMO

Stroma is a poorly defined non-parenchymal component of virtually every organ with key roles in organ development, homeostasis, and repair. Studies of the bone marrow stroma have defined individual populations in the stem cell niche regulating hematopoietic regeneration and capable of initiating leukemia. Here, we use single-cell RNA sequencing (scRNA-seq) to define a cellular taxonomy of the mouse bone marrow stroma and its perturbation by malignancy. We identified seventeen stromal subsets expressing distinct hematopoietic regulatory genes spanning new fibroblastic and osteoblastic subpopulations including distinct osteoblast differentiation trajectories. Emerging acute myeloid leukemia impaired mesenchymal osteogenic differentiation and reduced regulatory molecules necessary for normal hematopoiesis. These data suggest that tissue stroma responds to malignant cells by disadvantaging normal parenchymal cells. Our taxonomy of the stromal compartment provides a comprehensive bone marrow cell census and experimental support for cancer cell crosstalk with specific stromal elements to impair normal tissue function and thereby enable emergent cancer.


Assuntos
Células da Medula Óssea/metabolismo , Diferenciação Celular , Homeostase , Leucemia Mieloide Aguda/metabolismo , Osteoblastos/metabolismo , Osteogênese , Microambiente Tumoral , Animais , Células da Medula Óssea/patologia , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos , Osteoblastos/patologia , Células Estromais/metabolismo , Células Estromais/patologia
2.
Cell ; 167(1): 171-186.e15, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27641501

RESUMO

While acute myeloid leukemia (AML) comprises many disparate genetic subtypes, one shared hallmark is the arrest of leukemic myeloblasts at an immature and self-renewing stage of development. Therapies that overcome differentiation arrest represent a powerful treatment strategy. We leveraged the observation that the majority of AML, despite their genetically heterogeneity, share in the expression of HoxA9, a gene normally downregulated during myeloid differentiation. Using a conditional HoxA9 model system, we performed a high-throughput phenotypic screen and defined compounds that overcame differentiation blockade. Target identification led to the unanticipated discovery that inhibition of the enzyme dihydroorotate dehydrogenase (DHODH) enables myeloid differentiation in human and mouse AML models. In vivo, DHODH inhibitors reduced leukemic cell burden, decreased levels of leukemia-initiating cells, and improved survival. These data demonstrate the role of DHODH as a metabolic regulator of differentiation and point to its inhibition as a strategy for overcoming differentiation blockade in AML.


Assuntos
Antineoplásicos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Terapia de Alvo Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Animais , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Diferenciação Celular , Di-Hidro-Orotato Desidrogenase , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Ensaios de Triagem em Larga Escala , Proteínas de Homeodomínio/genética , Humanos , Leucemia Mieloide Aguda/genética , Camundongos , Células Mieloides/patologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Pirimidinas/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/isolamento & purificação , Bibliotecas de Moléculas Pequenas/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Blood ; 125(3): 474-82, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25395419

RESUMO

The human T-cell lymphotropic virus type I (HTLV-1) Tax transactivator initiates transformation in adult T-cell leukemia/lymphoma (ATL), a highly aggressive chemotherapy-resistant malignancy. The arsenic/interferon combination, which triggers degradation of the Tax oncoprotein, selectively induces apoptosis of ATL cell lines and has significant clinical activity in Tax-driven murine ATL or human patients. However, the role of Tax loss in ATL response is disputed, and the molecular mechanisms driving degradation remain elusive. Here we demonstrate that ATL-derived or HTLV-1-transformed cells are dependent on continuous Tax expression, suggesting that Tax degradation underlies clinical responses to the arsenic/interferon combination. The latter enforces promyelocytic leukemia protein (PML) nuclear body (NB) formation and partner protein recruitment. In arsenic/interferon-treated HTLV-1 transformed or ATL cells, Tax is recruited onto NBs and undergoes PML-dependent hyper-sumoylation by small ubiquitin-like modifier (SUMO)2/3 but not SUMO1, ubiquitination by RNF4, and proteasome-dependent degradation. Thus, the arsenic/interferon combination clears ATL through degradation of its Tax driver, and this regimen could have broader therapeutic value by promoting degradation of other pathogenic sumoylated proteins.


Assuntos
Arsenicais/farmacologia , Produtos do Gene tax/metabolismo , Interferons/farmacologia , Leucemia-Linfoma de Células T do Adulto/virologia , Proteínas Nucleares/metabolismo , Proteólise/efeitos dos fármacos , Proteína SUMO-1/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Antivirais/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Proliferação de Células/efeitos dos fármacos , Transformação Celular Viral/efeitos dos fármacos , Quimioterapia Combinada , Citometria de Fluxo , Imunofluorescência , Células HeLa , Vírus Linfotrópico T Tipo 1 Humano/genética , Vírus Linfotrópico T Tipo 1 Humano/patogenicidade , Humanos , Imunoprecipitação , Leucemia-Linfoma de Células T do Adulto/genética , Proteína da Leucemia Promielocítica , Reagentes de Sulfidrila/farmacologia , Sumoilação/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos
5.
J Virol ; 87(2): 1123-36, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23135727

RESUMO

Permanent activation of the NF-κB pathway by the human T cell leukemia virus type 1 (HTLV-1) Tax (Tax1) viral transactivator is a key event in the process of HTLV-1-induced T lymphocyte immortalization and leukemogenesis. Although encoding a Tax transactivator (Tax2) that activates the canonical NF-κB pathway, HTLV-2 does not cause leukemia. These distinct pathological outcomes might be related, at least in part, to distinct NF-κB activation mechanisms. Tax1 has been shown to be both ubiquitinated and SUMOylated, and these two modifications were originally proposed to be required for Tax1-mediated NF-κB activation. Tax1 ubiquitination allows recruitment of the IKK-γ/NEMO regulatory subunit of the IKK complex together with Tax1 into centrosome/Golgi-associated cytoplasmic structures, followed by activation of the IKK complex and RelA/p65 nuclear translocation. Herein, we compared the ubiquitination, SUMOylation, and acetylation patterns of Tax2 and Tax1. We show that, in contrast to Tax1, Tax2 conjugation to endogenous ubiquitin and SUMO is barely detectable while both proteins are acetylated. Importantly, Tax2 is neither polyubiquitinated on lysine residues nor ubiquitinated on its N-terminal residue. Consistent with these observations, Tax2 conjugation to ubiquitin and Tax2-mediated NF-κB activation is not affected by overexpression of the E2 conjugating enzyme Ubc13. We further demonstrate that a nonubiquitinable, non-SUMOylable, and nonacetylable Tax2 mutant retains a significant ability to activate transcription from a NF-κB-dependent promoter after partial activation of the IKK complex and induction of RelA/p65 nuclear translocation. Finally, we also show that Tax2 does not interact with TRAF6, a protein that was shown to positively regulate Tax1-mediated activation of the NF-κB pathway.


Assuntos
Produtos do Gene tax/metabolismo , Vírus Linfotrópico T Tipo 2 Humano/patogenicidade , NF-kappa B/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Ubiquitina/metabolismo , Acetilação , Células HeLa , Humanos , Células Jurkat , Processamento de Proteína Pós-Traducional
6.
Genome Med ; 16(1): 1, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38281962

RESUMO

BACKGROUND: Despite therapeutic advances, once a cancer has metastasized to the bone, it represents a highly morbid and lethal disease. One third of patients with advanced clear cell renal cell carcinoma (ccRCC) present with bone metastasis at the time of diagnosis. However, the bone metastatic niche in humans, including the immune and stromal microenvironments, has not been well-defined, hindering progress towards identification of therapeutic targets. METHODS: We collected fresh patient samples and performed single-cell transcriptomic profiling of solid metastatic tissue (Bone Met), liquid bone marrow at the vertebral level of spinal cord compression (Involved), and liquid bone marrow from a different vertebral body distant from the tumor site but within the surgical field (Distal), as well as bone marrow from patients undergoing hip replacement surgery (Benign). In addition, we incorporated single-cell data from primary ccRCC tumors (ccRCC Primary) for comparative analysis. RESULTS: The bone marrow of metastatic patients is immune-suppressive, featuring increased, exhausted CD8 + cytotoxic T cells, T regulatory cells, and tumor-associated macrophages (TAM) with distinct transcriptional states in metastatic lesions. Bone marrow stroma from tumor samples demonstrated a tumor-associated mesenchymal stromal cell population (TA-MSC) that appears to be supportive of epithelial-to mesenchymal transition (EMT), bone remodeling, and a cancer-associated fibroblast (CAFs) phenotype. This stromal subset is associated with poor progression-free and overall survival and also markedly upregulates bone remodeling through the dysregulation of RANK/RANKL/OPG signaling activity in bone cells, ultimately leading to bone resorption. CONCLUSIONS: These results provide a comprehensive analysis of the bone marrow niche in the setting of human metastatic cancer and highlight potential therapeutic targets for both cell populations and communication channels.


Assuntos
Carcinoma de Células Renais , Humanos , Carcinoma de Células Renais/genética , Células Estromais/patologia , Transdução de Sinais , Perfilação da Expressão Gênica , Análise de Célula Única , Microambiente Tumoral
7.
Blood ; 117(1): 190-9, 2011 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-20959607

RESUMO

The human T-lymphotropic virus type I oncoprotein Tax is critical for T-cell transformation, acting mainly through nuclear factor kappa B essential modulator (NEMO) binding and subsequent nuclear factor-κB activation. Tax localizes to Tax nuclear bodies and to the centrosome and is subjected to ubiquitylation and small ubiquitin-like modifier (SUMO)ylation, which are both necessary for complete transcriptional activation. Using the photoconvertible fluorophore Dendra-2 coupled with live video confocal microscopy, we show for the first time that the same Tax molecule shuttles among Tax nuclear bodies and between these nuclear bodies and the centrosome, depending on its posttranslational modifications. Ubiquitylation targets Tax to nuclear bodies to which NEMO is recruited and subsequently SUMOylated. We also demonstrate that Tax nuclear bodies contain the SUMOylation machinery including SUMO and the SUMO conjugating enzyme Ubc9, strongly suggesting that these nuclear bodies represent sites of active SUMOylation. Finally, both ubiquitylation and SUMOylation of Tax control NEMO targeting to the centrosome. Altogether, we are proposing a model where both ubiquitylation and SUMOylation of Tax control the shuttling of Tax and NEMO between the cytoplasmic and nuclear compartments.


Assuntos
Núcleo Celular/metabolismo , Centrossomo/fisiologia , Produtos do Gene tax/fisiologia , Quinase I-kappa B/metabolismo , Sumoilação , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação , Western Blotting , Células Cultivadas , Citoplasma/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Imunofluorescência , Humanos , Quinase I-kappa B/genética , Rim/citologia , Rim/metabolismo , Pulmão/citologia , Pulmão/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Ativação Transcricional , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/genética
8.
Blood Adv ; 7(21): 6608-6623, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37450380

RESUMO

Myelodysplastic syndromes (MDSs) are a heterogenous group of diseases affecting the hematopoietic stem cell that are curable only by stem cell transplantation. Both hematopoietic cell intrinsic changes and extrinsic signals from the bone marrow (BM) niche seem to ultimately lead to MDS. Animal models of MDS indicate that alterations in specific mesenchymal progenitor subsets in the BM microenvironment can induce or select for abnormal hematopoietic cells. Here, we identify a subset of human BM mesenchymal cells marked by the expression of CD271, CD146, and CD106. This subset of human mesenchymal cells is comparable with mouse mesenchymal cells that, when perturbed, result in an MDS-like syndrome. Its transcriptional analysis identified Osteopontin (SPP1) as the most overexpressed gene. Selective depletion of Spp1 in the microenvironment of the mouse MDS model, Vav-driven Nup98-HoxD13, resulted in an accelerated progression as demonstrated by increased chimerism, higher mutant myeloid cell burden, and a more pronounced anemia when compared with that in wild-type microenvironment controls. These data indicate that molecular perturbations can occur in specific BM mesenchymal subsets of patients with MDS. However, the niche adaptations to dysplastic clones include Spp1 overexpression that can constrain disease fitness and potentially progression. Therefore, niche changes with malignant disease can also serve to protect the host.


Assuntos
Medula Óssea , Síndromes Mielodisplásicas , Humanos , Camundongos , Animais , Medula Óssea/patologia , Síndromes Mielodisplásicas/genética , Células-Tronco Hematopoéticas/metabolismo , Células da Medula Óssea/metabolismo , Modelos Animais de Doenças , Progressão da Doença
9.
Nat Commun ; 14(1): 663, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750562

RESUMO

The treatment of low-risk primary prostate cancer entails active surveillance only, while high-risk disease requires multimodal treatment including surgery, radiation therapy, and hormonal therapy. Recurrence and development of metastatic disease remains a clinical problem, without a clear understanding of what drives immune escape and tumor progression. Here, we comprehensively describe the tumor microenvironment of localized prostate cancer in comparison with adjacent normal samples and healthy controls. Single-cell RNA sequencing and high-resolution spatial transcriptomic analyses reveal tumor context dependent changes in gene expression. Our data indicate that an immune suppressive tumor microenvironment associates with suppressive myeloid populations and exhausted T-cells, in addition to high stromal angiogenic activity. We infer cell-to-cell relationships from high throughput ligand-receptor interaction measurements within undissociated tissue sections. Our work thus provides a highly detailed and comprehensive resource of the prostate tumor microenvironment as well as tumor-stromal cell interactions.


Assuntos
Neoplasias da Próstata , Transcriptoma , Masculino , Humanos , Próstata/patologia , Microambiente Tumoral , Perfilação da Expressão Gênica , Neoplasias da Próstata/genética
10.
bioRxiv ; 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37066307

RESUMO

Mesenchymal stem/stromal cells (MSCs) within the bone marrow microenvironment (BMME) support normal hematopoietic stem and progenitor cells (HSPCs). However, the heterogeneity of human MSCs has limited the understanding of their contribution to clonal dynamics and evolution to myelodysplastic syndromes (MDS). We combined three MSC cell surface markers, CD271, VCAM-1 (Vascular Cell Adhesion Molecule-1) and CD146, to isolate distinct subsets of human MSCs from bone marrow aspirates of healthy controls (Control BM). Based on transcriptional and functional analysis, CD271+CD106+CD146+ (NGFR+/VCAM1+/MCAM+/Lin-; NVML) cells display stem cell characteristics, are compatible with murine BM-derived Leptin receptor positive MSCs and provide superior support for normal HSPCs. MSC subsets from 17 patients with MDS demonstrated shared transcriptional changes in spite of mutational heterogeneity in the MDS clones, with loss of preferential support of normal HSPCs by MDS-derived NVML cells. Our data provide a new approach to dissect microenvironment-dependent mechanisms regulating clonal dynamics and progression of MDS.

11.
Blood Adv ; 6(17): 5072-5084, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35793392

RESUMO

Genome-wide CRISPR screens have been extremely useful in identifying therapeutic targets in diverse cancers by defining genes that are essential for malignant growth. However, most CRISPR screens were performed in vitro and thus cannot identify genes that are essential for interactions with the microenvironment in vivo. Here, we report genome-wide CRISPR screens in 2 in vivo murine models of acute myeloid leukemia (AML) driven by the KMT2A/MLLT3 fusion or by the constitutive coexpression of Hoxa9 and Meis1. Secondary validation using a focused library identified 72 genes specifically essential for leukemic growth in vivo, including components of the major histocompatibility complex class I complex, Cd47, complement receptor Cr1l, and the ß-4-galactosylation pathway. Importantly, several of these in vivo-specific hits have a prognostic effect or are inferred to be master regulators of protein activity in human AML cases. For instance, we identified Fermt3, a master regulator of integrin signaling, as having in vivo-specific dependency with high prognostic relevance. Overall, we show an experimental and computational pipeline for genome-wide functional screens in vivo in AML and provide a genome-wide resource of essential drivers of leukemic growth in vivo.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Leucemia Mieloide Aguda , Animais , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Proteína Meis1/genética , Proteína Meis1/metabolismo , Transdução de Sinais , Microambiente Tumoral/genética
12.
Nat Commun ; 13(1): 5747, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180422

RESUMO

Clear cell renal cell carcinoma (ccRCC) is the most common type of kidney cancer in adults. When ccRCC is localized to the kidney, surgical resection or ablation of the tumor is often curative. However, in the metastatic setting, ccRCC remains a highly lethal disease. Here we use fresh patient samples that include treatment-naive primary tumor tissue, matched adjacent normal kidney tissue, as well as tumor samples collected from patients with bone metastases. Single-cell transcriptomic analysis of tumor cells from the primary tumors reveals a distinct transcriptional signature that is predictive of metastatic potential and patient survival. Analysis of supporting stromal cells within the tumor environment demonstrates vascular remodeling within the endothelial cells. An in silico cell-to-cell interaction analysis highlights the CXCL9/CXCL10-CXCR3 axis and the CD70-CD27 axis as potential therapeutic targets. Our findings provide biological insights into the interplay between tumor cells and the ccRCC microenvironment.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Adulto , Carcinoma de Células Renais/patologia , Células Endoteliais/metabolismo , Humanos , Rim/metabolismo , Neoplasias Renais/patologia , Transcriptoma , Microambiente Tumoral/genética
13.
Nat Cardiovasc Res ; 1(1): 28-44, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35747128

RESUMO

Abnormal hematopoiesis advances cardiovascular disease by generating excess inflammatory leukocytes that attack the arteries and the heart. The bone marrow niche regulates hematopoietic stem cell proliferation and hence the systemic leukocyte pool, but whether cardiovascular disease affects the hematopoietic organ's microvasculature is unknown. Here we show that hypertension, atherosclerosis and myocardial infarction (MI) instigate endothelial dysfunction, leakage, vascular fibrosis and angiogenesis in the bone marrow, altogether leading to overproduction of inflammatory myeloid cells and systemic leukocytosis. Limiting angiogenesis with endothelial deletion of Vegfr2 (encoding vascular endothelial growth factor (VEGF) receptor 2) curbed emergency hematopoiesis after MI. We noted that bone marrow endothelial cells assumed inflammatory transcriptional phenotypes in all examined stages of cardiovascular disease. Endothelial deletion of Il6 or Vcan (encoding versican), genes shown to be highly expressed in mice with atherosclerosis or MI, reduced hematopoiesis and systemic myeloid cell numbers in these conditions. Our findings establish that cardiovascular disease remodels the vascular bone marrow niche, stimulating hematopoiesis and production of inflammatory leukocytes.

15.
Cancer Cell ; 39(11): 1464-1478.e8, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34719426

RESUMO

Bone metastases are devastating complications of cancer. They are particularly common in prostate cancer (PCa), represent incurable disease, and are refractory to immunotherapy. We seek to define distinct features of the bone marrow (BM) microenvironment by analyzing single cells from bone metastatic prostate tumors, involved BM, uninvolved BM, and BM from cancer-free, orthopedic patients, and healthy individuals. Metastatic PCa is associated with multifaceted immune distortion, specifically exhaustion of distinct T cell subsets, appearance of macrophages with states specific to PCa bone metastases. The chemokine CCL20 is notably overexpressed by myeloid cells, as is its cognate CCR6 receptor on T cells. Disruption of the CCL20-CCR6 axis in mice with syngeneic PCa bone metastases restores T cell reactivity and significantly prolongs animal survival. Comparative high-resolution analysis of PCa bone metastases shows a targeted approach for relieving local immunosuppression for therapeutic effect.


Assuntos
Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Quimiocina CCL20/genética , Neoplasias da Próstata/patologia , Receptores CCR6/genética , Regulação para Cima , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/imunologia , Estudos de Casos e Controles , Linhagem Celular Tumoral , Quimiocina CCL20/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Macrófagos/imunologia , Masculino , Camundongos , Células Mieloides/imunologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/imunologia , Receptores CCR6/metabolismo , Análise de Célula Única , Linfócitos T/imunologia , Microambiente Tumoral
16.
Cell Stem Cell ; 28(12): 2090-2103.e9, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34551362

RESUMO

Extracellular vesicles (EVs) transfer complex biologic material between cells. However, the role of this process in vivo is poorly defined. Here, we demonstrate that osteoblastic cells in the bone marrow (BM) niche elaborate extracellular vesicles that are taken up by hematopoietic progenitor cells in vivo. Genotoxic or infectious stress rapidly increased stromal-derived extracellular vesicle transfer to granulocyte-monocyte progenitors. The extracellular vesicles contained processed tRNAs (tiRNAs) known to modulate protein translation. 5'-ti-Pro-CGG-1 was preferentially abundant in osteoblast-derived extracellular vesicles and, when transferred to granulocyte-monocyte progenitors, increased protein translation, cell proliferation, and myeloid differentiation. Upregulating EV transfer improved hematopoietic recovery from genotoxic injury and survival from fungal sepsis. Therefore, EV-mediated tiRNA transfer provides a stress-modulated signaling axis in the BM niche distinct from conventional cytokine-driven stress responses.


Assuntos
Vesículas Extracelulares , Células-Tronco Hematopoéticas , Medula Óssea , Células da Medula Óssea , Hematopoese
17.
Cell Stem Cell ; 25(4): 570-583.e7, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31279774

RESUMO

Stromal cell populations that maintain hematopoietic stem and progenitor cells (HSPCs) are generally characterized in steady-state conditions. Here, we report a comprehensive atlas of bone marrow stromal cell subpopulations under homeostatic and stress conditions using mass cytometry (CyTOF)-based single-cell protein analysis. We identified 28 subsets of non-hematopoietic cells during homeostasis, 14 of which expressed hematopoietic regulatory factors. Irradiation-based conditioning for HSPC transplantation led to the loss of most of these populations, including the LeptinR+ and Nestin+ subsets. In contrast, a subset expressing Ecto-5'-nucleotidase (CD73) was retained and a specific CD73+NGFRhigh population expresses high levels of cytokines during homeostasis and stress. Genetic ablation of CD73 compromised HSPC transplantation in an acute setting without long-term changes in bone marrow HSPCs. Thus, this protein-based expression mapping reveals distinct sets of stromal cells in the bone marrow and how they change in clinically relevant stress settings to contribute to early stages of hematopoietic regeneration.


Assuntos
Células da Medula Óssea/metabolismo , Estresse Fisiológico/fisiologia , Células Estromais/metabolismo , 5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo , Animais , Atlas como Assunto , Células da Medula Óssea/patologia , Células Cultivadas , Hematopoese , Transplante de Células-Tronco Hematopoéticas , Homeostase , Humanos , Espectrometria de Massas , Camundongos , Camundongos Knockout , Nestina/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo , Receptores para Leptina/metabolismo , Nicho de Células-Tronco , Células Estromais/patologia
18.
Haematologica ; 92(6): 753-62, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17550847

RESUMO

BACKGROUND AND OBJECTIVES: Arsenic trioxide (ATO) is an effective treatment for acute promyelocytic leukemia (APL) and potentially for human T-cell leukemia virus type I (HTLV-I) associated adult T-cell leukemia/lymphoma (ATL). Many cytotoxic drugs induce apoptosis through the generation and accumulation of the sphingolipid breakdown product, ceramide, a coordinator of the cellular response to stress. We, therefore, investigated the contribution of ceramide to the mechanism of action of ATO in APL and ATL. DESIGN AND METHODS: A human APL-derived cell line (NB4), various ATL-derived lines and an HTLV-I-negative malignant T-cell line were cultured and treated with ATO. Growth and apoptosis assays were conducted. Measurements were made of ceramide, diacylglycerol, sphingomyelinase activity, sphingomyelin mass, glucosylceramide synthase activity and the de novo ceramide synthesis. RESULTS: Treatment of APL and ATL-derived cells with a clinically achievable concentration of ATO induced accumulation of cytotoxic levels of ceramide. The effects of ATO on ceramide levels in APL cells were more potent than those of all-trans retinoic acid (ATRA). ATO downregulated neutral sphingomyelinase activity. In contrast to the effect of ATRA, ATO-induced ceramide accumulation was not due to induction of acidic sphingomyelinase, but rather resulted from both de novo ceramide synthesis and inhibition of glucosylceramide synthase activity. Interestingly, the effects of ATO on de novo ceramide synthesis were similar in APL and ATL-derived cells despite the defective pathway in ATL cells. INTERPRETATION AND CONCLUSIONS: These results indicate that ATO-induced ceramide accumulation may represent a general mediator of the effects of ATO, which paves the way for new therapeutic interventions that target the metabolic pathway of this important sphingolipid secondary messenger.


Assuntos
Arsenicais/farmacologia , Ceramidas/biossíntese , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia-Linfoma de Células T do Adulto/tratamento farmacológico , Óxidos/farmacologia , Apoptose/efeitos dos fármacos , Trióxido de Arsênio , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Glucosiltransferases/antagonistas & inibidores , Humanos , Leucemia Promielocítica Aguda/patologia , Leucemia-Linfoma de Células T do Adulto/patologia , Redes e Vias Metabólicas/efeitos dos fármacos
19.
Exp Hematol ; 49: 68-72, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28043821

RESUMO

Sharing reagents is of self-evident value in life science research, however, primary cell populations often do not cryopreserve well or can require extensive preparation by collaborators, making shipping difficult. Here we report an evaluation of different conditions for the storage shipment of mouse bone marrow (BM) cells that would best preserve the number, viability, and frequency of different hematopoietic lineages, as well as functionality of progenitor populations. Bones were either crushed to release BM cells or stored intact in one of three media: Phosphate buffered saline (PBS) supplemented with 2% fetal bovine serum (FBS), Plasmalyte, or RPMI at 4°C. Cell numbers, viability, phenotype, and functionality were assessed 16 hours and 40 hours later and compared to freshly prepared samples. Whereas BM cells stored in suspension for 16 hours and BM cells kept in bone for 40 hours suffered major losses in cell number, hematopoietic lineages that were kept in the bone for 16 hours had only minor differences compared to fresh cells. With no significant differences among the different media used, intact long bones stored in media, Plasmalyte, or PBS 2% FBS for up to 16 hours provided a reasonable means of preserving bone marrow cell populations.


Assuntos
Medula Óssea , Meios de Cultura , Células-Tronco Hematopoéticas , Manejo de Espécimes/métodos , Preservação de Tecido/métodos , Animais , Bovinos , Sobrevivência Celular , Camundongos
20.
J Clin Invest ; 127(4): 1405-1413, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28319048

RESUMO

The mTOR pathway is a critical determinant of cell persistence and growth wherein mTOR complex 1 (mTORC1) mediates a balance between growth factor stimuli and nutrient availability. Amino acids or glucose facilitates mTORC1 activation by inducing RagA GTPase recruitment of mTORC1 to the lysosomal outer surface, enabling activation of mTOR by the Ras homolog Rheb. Thereby, RagA alters mTORC1-driven growth in times of nutrient abundance or scarcity. Here, we have evaluated differential nutrient-sensing dependence through RagA and mTORC1 in hematopoietic progenitors, which dynamically drive mature cell production, and hematopoietic stem cells (HSC), which provide a quiescent cellular reserve. In nutrient-abundant conditions, RagA-deficient HSC were functionally unimpaired and upregulated mTORC1 via nutrient-insensitive mechanisms. RagA was also dispensable for HSC function under nutritional stress conditions. Similarly, hyperactivation of RagA did not affect HSC function. In contrast, RagA deficiency markedly altered progenitor population function and mature cell output. Therefore, RagA is a molecular mechanism that distinguishes the functional attributes of reactive progenitors from a reserve stem cell pool. The indifference of HSC to nutrient sensing through RagA contributes to their molecular resilience to nutritional stress, a characteristic that is relevant to organismal viability in evolution and in modern HSC transplantation approaches.


Assuntos
Células-Tronco Hematopoéticas/fisiologia , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Adaptação Fisiológica , Aminoácidos/fisiologia , Animais , Diferenciação Celular , Células Cultivadas , Homeostase , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA