Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Planta Med ; 88(9-10): 729-734, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35354220

RESUMO

Chemical investigation of Punctularia atropurpurascens strain HM1 (Punctulariaceae), a corticioid isolated from a decorticated piece of Quercus bark collected in Bosque de Tlalpan, Mexico City, led to the isolation of a new drimane, 1-α-hydroxy-isodrimenine (1: ) and a new tetrahydroxy kauranol, 16-hydroxy-phlebia-nor-kauranol (2: ), together with the known N-phenylacetamide (3: ). Structures of all compounds were elucidated by spectroscopic and spectrometric methods, and the absolute configuration of 1: and 2: was confirmed via single-crystal X-ray crystallography. The isolated compounds showed modest antimycobacterial activity.


Assuntos
Basidiomycota , Terpenos , Antibacterianos/farmacologia , Cristalografia por Raios X , Fungos , Estrutura Molecular , Terpenos/farmacologia
2.
Molecules ; 27(3)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35164265

RESUMO

The oxidation of transition metals such as manganese and copper by dioxygen (O2) is of great interest to chemists and biochemists for fundamental and practical reasons. In this report, the O2 reactivities of 1:1 and 1:2 mixtures of [(TPP)MnII] (1; TPP: Tetraphenylporphyrin) and [(tmpa)CuI(MeCN)]+ (2; TMPA: Tris(2-pyridylmethyl)amine) in 2-methyltetrahydrofuran (MeTHF) are described. Variable-temperature (-110 °C to room temperature) absorption spectroscopic measurements support that, at low temperature, oxygenation of the (TPP)Mn/Cu mixtures leads to rapid formation of a cupric superoxo intermediate, [(tmpa)CuII(O2•-)]+ (3), independent of the presence of the manganese porphyrin complex (1). Complex 3 subsequently reacts with 1 to form a heterobinuclear µ-peroxo species, [(tmpa)CuII-(O22-)-MnIII(TPP)]+ (4; λmax = 443 nm), which thermally converts to a µ-oxo complex, [(tmpa)CuII-O-MnIII(TPP)]+ (5; λmax = 434 and 466 nm), confirmed by electrospray ionization mass spectrometry and nuclear magnetic resonance spectroscopy. In the 1:2 (TPP)Mn/Cu mixture, 4 is subsequently attacked by a second equivalent of 3, giving a bis-µ-peroxo species, i.e., [(tmpa)CuII-(O22-)-MnIV(TPP)-(O22-)-CuII(tmpa)]2+ (7; λmax = 420 nm and δpyrrolic = -44.90 ppm). The final decomposition product of the (TPP)Mn/Cu/O2 chemistry in MeTHF is [(TPP)MnIII(MeTHF)2]+ (6), whose X-ray structure is also presented and compared to literature analogs.

3.
Inorg Chem ; 60(17): 12870-12882, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34370470

RESUMO

Diheme cytochromes, the simplest members in the multiheme family, play substantial biochemical roles in enzymatic catalysis as well as in electron transfer. A series of diiron(III) porphyrin dimers have been synthesized as active site analogues of diheme cytochromes. The complexes contain six-coordinated iron(III) having thiophenol and imidazole at the fifth and sixth coordination sites, respectively. The iron centers in the complexes have been found to be in a low-spin state, as confirmed through solid-state Mössbauer and electron paramagnetic resonance (EPR) spectroscopic investigations. Mössbauer quadrupole splitting of complexes having mixed ligands is substantially larger than that observed when both axial ligands are the same. Rhombic types of EPR spectra with narrow separation between gx, gy, and gz clearly distinguish heme thiolate coordination compared to bis(imidazole)-ligated low-spin heme centers. The redox potential in diheme cytochromes has been found to be tuned by interheme interactions along with the nature of axial ligands. The effect of mixed-axial ligation within the diiron(III) porphyrin dimers is demonstrated by a positive shift in the Fe(III)/Fe(II) redox couple upon thiophenolate coordination compared to their bis(imidazole) analogues. The pKa of the imidazole also decides the extent of the shift for the Fe(III)/Fe(II) couple, while the potential of the mixed-ligated diiron(III) porphyrin dimer is more positive compared to their monomeric analogue. A variation of around 1.1 V for the Fe(III)/Fe(II) redox potential in the diiron(III) porphyrin dimer can be achieved with the combined effect of axial ligation and a metal spin state, while such a large variation in the redox potential, compared to their monomeric analogues, is attributed to the heme-heme interactions observed in dihemes. Moreover, theoretical calculations also support the experimental shifts in the redox potential values.


Assuntos
Imidazóis/química , Metaloporfirinas/química , Fenóis/química , Compostos de Sulfidrila/química , Citocromos/química , Teoria da Densidade Funcional , Espectroscopia de Ressonância de Spin Eletrônica , Heme/química , Ferro/química , Ligantes , Metaloporfirinas/síntese química , Modelos Químicos , Oxirredução , Espectroscopia de Prótons por Ressonância Magnética , Espectroscopia de Mossbauer
4.
Inorg Chem ; 57(18): 11498-11510, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30148359

RESUMO

We explore here the structure-function relationship of the diheme cytochrome c using synthetic diheme analogs which serve as a convenient tool to investigate various aspects of Nature's sophisticated design in vitro. A large series of diiron ethane-bridged porphyrin dimers, both in the oxidized and the reduced states, are synthesized and their structural, chemical, and electrochemical properties have been scrutinized. Interestingly, the iron-to-iron nonbonding separation observed in such dihemes ranges from 9.49 to 10.06 Å which is very similar to the separation of 9.4 and 9.9 Å observed in the crystal structures of diheme cytochromes c isolated from Geobacter sulfurreducens and Haemophilus influenza, respectively. The FeIII/FeII redox couple in the diheme complex is shifted toward more positive than their monomeric analog. Present study unmasks the electronic structure and properties of diheme centers and also highlights the significance of their structural arrangement and axial ligand orientation, and heme-to-heme separation. The Atoms in Molecules (AIM) analysis suggests long-range attractive dispersion forces between the heme units for the observed structure and properties in dihemes.


Assuntos
Heme/química , Modelos Moleculares , Oxirredutases/química , Relação Estrutura-Atividade , Simulação por Computador , Cristalografia por Raios X , Heme/metabolismo , Espectroscopia de Ressonância Magnética , Oxirredutases/metabolismo
5.
Angew Chem Int Ed Engl ; 56(30): 8849-8854, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28561436

RESUMO

The interaction between two AgII porphyrins, connected covalently through a highly flexible ethane bridge, in a metalloporphyrin dimer has been investigated upon stepwise oxidation. X-ray structure determination of one and two-electron oxidized complexes has clearly revealed only metal-centered oxidation that results in short Ag-N (porphyrin) distance with large distortion in the porphyrin macrocycle. The 2e-oxidized complex exhibits significant metallophilic interaction in the form of a close AgIII ⋅⋅⋅AgIII contact that brings two porphyrin rings more cofacial with syn-conformation, which would otherwise stabilize in an anti-form. The interaction also leads to an intense emission peak at 546 nm at 77 K in the photoluminescence study.

6.
Chemistry ; 22(41): 14585-97, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27555240

RESUMO

The synthesis, structure, and properties of bischloro, µ-oxo, and a family of µ-hydroxo complexes (with BF4 (-) , SbF6 (-) , and PF6 (-) counteranions) of diethylpyrrole-bridged diiron(III) bisporphyrins are reported. Spectroscopic characterization has revealed that the iron centers of the bischloro and µ-oxo complexes are in the high-spin state (S=(5) /2 ). However, the two iron centers in the diiron(III) µ-hydroxo complexes are equivalent with high spin (S=(5) /2 ) in the solid state and an intermediate-spin state (S=(3) /2 ) in solution. The molecules have been compared with previously known diiron(III) µ-hydroxo complexes of ethane-bridged bisporphyrin, in which two different spin states of iron were stabilized under the influence of counteranions. The dimanganese(III) analogues were also synthesized and spectroscopically characterized. A comparison of the X-ray structural parameters between diethylpyrrole and ethane-bridged µ-hydroxo bisporphyrins suggest an increased separation, and hence, less interactions between the two heme units of the former. As a result, unlike the ethane-bridged µ-hydroxo complex, both iron centers become equivalent in the diethylpyrrole-bridged complex and their spin state remains unresponsive to the change in counteranion. The iron(III) centers of the diethylpyrrole-bridged diiron(III) µ-oxo bisporphyrin undergo very strong antiferromagnetic interactions (J=-137.7 cm(-1) ), although the coupling constant is reduced to only a weak value in the µ-hydroxo complexes (J=-42.2, -44.1, and -42.4 cm(-1) for the BF4 , SbF6 , and PF6 complexes, respectively).

7.
Chemistry ; 22(45): 16124-16137, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27682429

RESUMO

Addition of 2,4,6-trinitrophenol (HTNP) to an ethene-bridged diiron(III) µ-oxo bisporphyrin (1) in CH2 Cl2 initially leads to the formation of diiron(III) µ-hydroxo bisporphyrin (2⋅TNP) with a phenolate counterion that, after further addition of HTNP or dissolution in a nonpolar solvent, converts to a diiron(III) complex with axial phenoxide coordination (3⋅(TNP)2 ). The progress of the reaction from µ-oxo to µ-hydroxo to axially ligated complex has been monitored in solution by using 1 H NMR spectroscopy because their signals appear in three different and distinct spectral regions. The X-ray structure of 2⋅TNP revealed that the nearly planar TNP counterion fits perfectly within the bisporphyrin cavity to form a strong hydrogen bond with the µ-hydroxo group, which thus stabilizes the two equivalent iron centers. In contrast, such counterions as I5 , I3 , BF4 , SbF6 , and PF6 are found to be tightly associated with one of the porphyrin rings and, therefore, stabilize two different spin states of iron in one molecule. A spectroscopic investigation of 2⋅TNP has revealed the presence of two equivalent iron centers with a high-spin state (S=5/2) in the solid state that converts to intermediate spin (S=3/2) in solution. An extensive computational study by using a range of DFT methods was performed on 2⋅TNP and 2+ , and clearly supports the experimentally observed spin flip triggered by hydrogen-bonding interactions. The counterion is shown to perturb the spin-state ordering through, for example, hydrogen-bonding interactions, switched positions between counterion and axial ligand, ion-pair interactions, and charge polarization. The present investigation thus provides a clear rationalization of the unusual counterion-specific spin states observed in the µ-hydroxo bisporphyrins that have so far remained the most outstanding issue.

8.
Inorg Chem ; 55(7): 3239-51, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-27002790

RESUMO

The synthesis, structure, and properties of a new family of five ethane-bridged dimanganese(III) µ-hydroxo bisporphyrins with the same core structure but different counteranions are reported here. Additions of 10% Brønsted acids such as HI, HBF4, HSbF6, HPF6, and HClO4 to a dichloromethane solution of the dichloro dimanganese(III) bisporphyrin produces complexes having a remarkably bent µ-hydroxo group with I3(-), BF4(-), SbF6(-), PF6(-), and ClO4(-) as counteranions, respectively. The X-ray structures of all complexes have been determined, which have revealed the presence of two equivalent high-spin manganese(III) centers with equally distorted porphyrin rings in the complexes, in sharp contrast with the case for the diiron(III) µ-hydroxo bisporphyrin analogues. (1)H NMR spectra have shown highly deshielded meso resonances, unlike the case for the diiron(III) analogues, where the meso resonances are highly shielded. The variable-temperature magnetic data have been subjected to a least-squares fit which provides a moderate antiferromagnetic coupling through the hydroxo bridge between two zero-field split Mn(III) centers with coupling constant (J) values ranging from -29.5 to -38.6 cm(-1). Fairly good correlations are observed for J with Mn-O(H) distances and Mn-O(H)-Mn angles for all the complexes except for that having an I3(-) counteranion. DFT calculations support the stabilization of two equivalent high-spin Mn(III) porphyrin cores in the complexes and have also explored the role of metal spin in controlling porphyrin ring deformation. Unlike diiron(III) µ-hydroxo bisporphyrin complexes, the dimanganese(III) analogues do not have easily accessible spin states of the metal attainable by subtle environmental perturbations and, therefore, can only stabilize the high-spin state with a variety of counteranions.

9.
ACS Org Inorg Au ; 4(1): 91-96, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38344016

RESUMO

A distinguished triplet splitting pattern for the 14N-1H couplings in the proton signals of a series of protonated nitrogen bases-aliphatic and aromatic amines, as well as pyridines-with the weakly coordinating tetrakis(pentafluorophenyl)borate anion, [B(C6F5)4]-, is observed for the first time in nonaqueous media at room temperature. The effects of ion pairing, solvent parameters, and correlation between the δH, 1JNH, and pKa values are reported.

10.
ACS Omega ; 7(14): 12171-12185, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35449929

RESUMO

Cenotes are habitats with unique physical, chemical, and biological features. Unexplored microorganisms from these sinkholes represent a potential source of bioactive molecules. Thus, a series of cultivable fungi (Aspergillus spp. NCA257, NCA264, and NCA276, Stachybotrys sp. NCA252, and Cladosporium sp. NCA273) isolated from the cenote Tza Itzá were subjected to chemical, coculture, and metabolomic analyses. Nineteen compounds were obtained and tested for their antimicrobial potential against ESKAPE pathogens, Mycobacterium tuberculosis, and nontuberculous mycobacteria. In particular, phenylspirodrimanes from Stachybotrys sp. NCA252 showed significant activity against MRSA, MSSA, and mycobacterial strains. On the other hand, the absolute configuration of the new compound 17-deoxy-aspergillin PZ (1) isolated from Aspergillus sp. NCA276 was established via single-crystal X-ray crystallography. Also, the chemical analysis of the cocultures between Aspergillus and Cladosporium strains revealed the production of metabolites that were not present or were barely detected in the monocultures. Finally, molecular networking analysis of the LC-MS-MS/MS data for each fungus was used as a tool for the annotation of additional compounds, increasing the chemical knowledge on the corresponding fungal strains. Overall, this is the first systematic chemical study on fungi isolated from a sinkhole in Mexico.

11.
J Inorg Biochem ; 225: 111593, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34555598

RESUMO

In this study on model compounds for the resting oxidized state of the iron­copper binuclear center in cytochrome c oxidase (CcO), we describe the synthesis of a new µ-oxo-heme/Cu complex, [(TPP)FeIII-O-CuII(tmpa)][B(C6F5)4] (2) {TPP: tetraphenyl porphyrinate(2-); TMPA: tris(2-pyridylmethylamine)}, as well as two protonation events for three µ-oxo-heme/Cu complexes with varying peripheral substituents on the heme site. The addition of increasing amounts of strong acid to these µ-oxo-heme/Cu systems successively led to the generation of the corresponding µ-hydroxo, µ-aquo, and the dissociated complexes. The heme/Cu assemblies bridged through a water ligand are reported here for the first time and the 1H NMR and 19F NMR spectral properties are consistent with antiferromagnetically coupled high-spin iron(III) and copper(II) centers. By titration using a series of protonated amines, the pKa values for the corresponding µ-hydroxo-heme/Cu species (i.e., the first protonation event) have been reported and compared with the pKa ranges previously estimated for related systems. These synthetic systems may represent structural models for the oxidized FeIII-X-CuII resting state, or turnover intermediates and can be employed to clarify the nature of proton/electron transfer events in CcO. SYNOPSIS: The resting oxidized state of the cytochrome c oxidase active site contains an Fea3-OHx-CuB moiety. Here, we investigated two successive protonation events, for a series of µ-oxo-heme/Cu assemblies and reported the pKa values for the first protonation event. The µ-aquo-heme/Cu complexes described here are the first examples of such systems.


Assuntos
Complexos de Coordenação/química , Heme/análogos & derivados , Aminas/química , Domínio Catalítico , Complexos de Coordenação/síntese química , Cobre/química , Complexo IV da Cadeia de Transporte de Elétrons/química , Modelos Químicos , Estrutura Molecular , Prótons , Titulometria
12.
Dalton Trans ; 50(21): 7433-7455, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33970173

RESUMO

A facile and effective strategy for the preparation of a series of ferricenium complexes bearing either electron-donating or electron-withdrawing substituents with weakly coordinating anions such as [B(C6F5)4]- or SbF6- is reported. These systems were thoroughly investigated for their ground state electronic structures in both solution and solid states using infrared (IR) and nuclear magnetic resonance (NMR) spectroscopies as well as single crystal X-ray crystallography and electrochemical measurements. The X-ray structures of the six electron-deficient ferricenium derivatives are of particular interest as only a handful (∼5) of such derivatives have been structurally characterized to date. Comparison of the structural data for both neutral and oxidized derivatives reveals that the nature of the substituents on the cyclopentadienyl (Cp) ligands displays a more significant impact on the metal-ligand separations (FeCt) in the oxidized species than in their neutral analogs. Our 1H-NMR measurements corroborate that in the neutral ferrocene derivatives, electron-donating ring substitutions lead to a greater shielding of the ring protons while electron-withdrawing groups via induction deshield the nearby ring protons. However, the data for the paramagnetic ferricenium derivatives reveals that this substitutional behavior is more complex and fundamentally reversed, which is further supported by our structural studies. We ascribe this reversal of behavior in the ferricenium derivatives to the δ back-donation from the iron atom into the Cp rings which can lead to the overall shielding of the ring protons. Interestingly, our NMR results for the electron-deficient ferricenium derivatives in solution also indicate a direct correlation between the solvent dielectric constant and the energy barrier for rotation around the metal-ligand bond in these systems, whereas such a correlation is absent or not significant in the case of the electron-rich ferricenium species or the corresponding neutral ferrocene analogs. In this work, we also present the electrochemical behavior of the corresponding ferricenium/ferrocene redox couples including potential values (E1/2), peak-to-peak separation (ΔE1/2), and diffusion coefficients (D) of the redox active species in order to provide a concise outline of these data in one place. Our electrochemical studies involved three different solvents and two supporting electrolytes. Notably, our findings point to the significant effect of ion-pairing in lowering the energy necessary for reduction of the ferricenium ion and E1/2 in lower-polarity media. This has significant implications in applications of the ferrocene or ferricenium derivatives as redox agents in low-polarity solvents where an accurate determination of redox potential is critical.

13.
Dalton Trans ; 48(19): 6353-6357, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30994665

RESUMO

A complete reversal of the spin state of iron(iii) is observed upon a small change to the diporphyrin bridge from ethane to ethene by keeping all other factors intact. Combined analysis using single crystal X-ray structure determination, Mössbauer, variable-temperature magnetic, 1H NMR and EPR studies has confirmed the spin states of iron(iii) complexes both in solid and solution phases.

14.
Dalton Trans ; 47(41): 14388-14401, 2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-29721563

RESUMO

The family of multiheme proteins constitutes one of the fascinating molecular machineries designed by Nature to execute a large variety of functions. A high level of conservation among the structural arrangement of heme units is evident among various multiheme cytochromes. The relative arrangement of the heme centers and the intermacrocyclic interactions therein have been found to exhibit a major role in functional properties of such a widely distributed family. The existence of more than one heme center provides an effective and efficient tool to modulate various structures and properties that are needed for its function. This Frontier overviews a brief account of our on-going efforts to examine some of the design principles in which the inter-heme distance and their relative orientations are appropriately chosen to elucidate, at the molecular level, the effects of heme-heme interactions and electronic communication in the synthetic dihemes.


Assuntos
Heme/química , Complexos Multiproteicos/química , Modelos Moleculares
15.
Dalton Trans ; 46(4): 1012-1037, 2017 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-28054074

RESUMO

The chemistry of oxo/hydroxo-bridged diheme centers, connected covalently through bridges, has attracted much attention recently. Close approach of the two heme centers in the µ-hydroxo complex results in an unequal core deformation which leads to the unusual stabilization of two different spin states of iron in a single molecular framework. The spin states are also counter-anion specific and are reversibly interconvertable. An increased separation between the heme centers, however, leads to a weaker inter-ring interaction and, hence, renders the iron centers equivalent. The counter anion has been found to perturb the spin state ordering of iron via H-bonding interaction, switching positions between counter anion and axial ligand, ion-dipole interaction, charge polarization etc. A tightly associated counter anion with one of the heme centers generates significant steric effect in both the solid state and solution and induces significant change in the structure and properties, including the iron spin state, without affecting the overall topology of the complex or the metal oxidation state. A brief account of our systematic investigation on this subject is presented in the present Perspective article.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA